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Accelerated Gossip in Networks of Given Dimension Using Jacobi Polynomial
Iterations®
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Abstract. Consider a network of agents connected by communication links, where each agent holds a real
value. The gossip problem consists in estimating the average of the values diffused in the network
in a distributed manner. We develop a method for solving the gossip problem that depends only on
the spectral dimension of the network, that is, in the communication network set-up, the dimension
of the space in which the agents live. This contrasts with previous work that required the spectral
gap of the network as a parameter, or suffered from slow mixing. Our method shows an important
improvement over existing algorithms in the nonasymptotic regime, i.e., when the values are far
from being fully mixed in the network. Our approach stems from a polynomial-based point of
view on gossip algorithms, as well as an approximation of the spectral measure of the graphs with
a Jacobi measure. We show the power of the approach with simulations on various graphs, and
with performance guarantees on graphs of known spectral dimension, such as grids and random
percolation bonds. An extension of this work to distributed Laplacian solvers is discussed. As a
side result, we also use the polynomial-based point of view to show the convergence of the message
passing algorithm for gossip of Moallemi and Van Roy on regular graphs. The explicit computation
of the rate of the convergence shows that message passing has a slow rate of convergence on graphs
with small spectral gap.
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1. Introduction. The averaging problem, or gossip problem, is a fundamental primitive of
distributed algorithms. Given a network composed of agents and undirected communication
links between them, we assign to each agent v a real value &,, called an observation. The goal
is to design an iterative communication procedure allowing each agent to know the average of
the initial observations in the network as quickly as possible.

The landmark paper [6] suggests the natural following protocol to solve the averaging
problem: at each iteration, each agent replaces his current observation by some average of the
observations of its neighbors in the network. We will refer to this method in the following
by the term simple gossip. More precisely, we are given a weight matrix W = (W, )y wev,
called the gossip matrix, indexed by the vertices v € V of the network graph, satisfying the
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property that W, , is nonzero only if v ~ w, that is v and w are connected in the graph.
Then the simple gossip iteration writes

(1.1) 0 =¢,, ahtt = Z W wiy, | t>0.

wiwn~v

The paper [6] proves the linear convergence of the observations to their average.

However, the rate of the linear convergence was shown to worsen significantly in many
networks of interest as the size of the network increases. More precisely, define the diameter
D of the network as the largest number of communication links needed to connect any two
agents. While, obviously, D steps of averaging are needed for any gossip method to spread
information in the network, the simple gossip method may require up to ©(D?) communication
steps to estimate the average, as for instance on the line graph, the two-dimensional grid, or the
random geometric graph (see [8] or [6, section IV.A]). To reach the O(D) bound, a diverse set
of ideas were proposed, including second-order recursions [7, 25|, message passing algorithms
[18], lifted Markov chain techniques [28], methods using Chebychev polynomial iterations
[2, 27], inspiration arising from advection-diffusion processes [26], and geographic gossip [10],
a method that uses the knowledge of the location of the agents on a field. To the best
of our knowledge, all of these accelerated methods assume that the agents hold additional
information about the network graph, such as its spectral gap. For instance, second-order
methods typically take the form (see [7])

x?) = E’Ua 1111) = Z W’U,’wx?va
(1.2) t+1 w:u;w t—1

Tyl =w Z Wy wy + (1 —w)zy t>1,

w:iwn~v

where w is some simple function of the spectral gap ~y, that is the distance between the
largest and the second largest eigenvalues of W. This iteration obtains optimal asymptotic
convergence on many graphs, with a relaxation time of the linear convergence on the order of
1/\/7 asy—0.

In this paper, we develop a gossip method based not on the spectral gap ~ but on the
density of eigenvalues of W near the upper edge of the spectrum. Looking at the upper part
of the spectrum at a broader scale allows us to improve the local averaging of the gossip
algorithm in the regime ¢ < 1/,/4. This improvement is worthwhile as the spectral gap
can get arbitrarily small in large graphs. For instance, in the case of the line graph or the
two-dimensional grid, the relaxation time 1/,/7 is of the order of the diameter D of the graph.
Thus the regime ¢ < 1/,/7 can be relevant for applications.

Remarkably, the spectral density of W near the upper edge can be described by a very
natural parameter: the spectral dimension d. The network is of spectral dimension d if the
number of eigenvalues of W in [1 — A, 1] is of the order of A%? for small A (y < A < 1); see
section 5.3 for rigorous definitions. We will see with examples that this definition coincides
with our intuition of the dimension of the graph, which is the dimension of the manifold on
which the agents live. For instance, the grid with nodes Z¢ where the nodes at distance 1 are
connected is a graph of dimension d. Thus the parameter d is much easier to know than the
spectral gap .
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In real-world situations, the practitioner reasonably knows if the network on which she
implements the gossip method is of finite dimension, and if so, she also knows the dimension
d. In this paper, we argue that she should run a second-order iteration with time-dependent
weights

0 1 0 0
Ty =&y, T, = ag E Wy + boxy ,

(1.3) t+1 I:wavv t t—1
:EU+ = a¢ Z Wy wty, +bixy, — iy, t>1,

wiIw~vY

where the recurrence weights ay, by, ¢; are given by the formulas

_ d+4 o d
STCR T %2 +a)
(1.4) Y (2t +d/2+1)(2t+d/2+2) b — d?(2t +d/2+ 1)
‘ b 2t + 1+ d/2)? ’ PT8(t+ 1+ d/2)%(2t 4 d)2)

t2(2t + d/2 + 2)

G+i+d2@tdp” oL

Ct —

The motivation for these choices of weights ay, by, c; is not obvious at first sight. It follows
from a polynomial-based point of view on gossip algorithms: it consists in seeing the iterations
(1.1), (1.2), and (1.3) as sequences Py, Pi, Py, ... of polynomials in the gossip matrix W. The
correspondence is given by the relation z' = P;(W)¢ where z¥ = (2!),cy and € = (&)vev .
This approach is inspired by similar work done in the resolution of linear systems [12] and
on the load balancing problem [9]. The choice of an iteration is reframed as the choice of
a sequence of polynomials, and the performance of the resulting gossip method depends on
the spectrum of W. As the dimension of the graph gives the rate of decrease of the spectral
density near the edge of the spectrum, it suggests the sequence of polynomials one should
take: we choose a parametrized sequence of polynomials called Jacobi polynomials that is
well known in the literature on orthogonal polynomials (see Definition SM2.2 of the Jacobi
polynomials). This actually leads to the iteration (1.3), which we call the Jacobi polynomial
iteration.

The Jacobi polynomial iteration (1.3) improves the convergence of the gossip method in
the transitive phase ¢ < 1/,/7 but loses the optimal rate of convergence of second-order gossip
because it does not use the spectral gap . We argue that in most applications of gossip
methods, the asymptotic rate of convergence is not of practical importance, especially if the
transient time is long. However, we also build a gossip iteration that uses both parameters
d and v and achieves both the efficiency in the nontransitive regime and the fast rate of
convergence.

This resolution of the gossip problem with inner-product free polynomial-based iterations
is new, and could lead to other interesting algorithms on other types of graphs. Here, the
phrase “inner-product free” comes from the literature on polynomial-based iterations for linear
systems [12] and refers to the fact that recurrence coefficients as, by, ¢; are computed without
using the gossip matrix W (but parametrized using the knowledge of d). Indeed, as the
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knowledge of the gossip matrix W is distributed across the graph, it would be a challenging
distributed problem to compute the recurrence coefficients if they depended on W.

Although our work is inspired by iterative methods for linear systems, the Jacobi iteration
that we developed for gossip can be transposed into a new idea in this literature which can
be useful for the distributed resolution of Laplacian systems over multiagent networks.

Outline of the paper. Section 2 sets some notation used in the remainder of the paper.
In section 3, we give simulations in different types of networks of dimensions 2 and 3. We show
that the recursion (1.3) brings important benefits over existing methods in the nonasymptotic
regime, i.e., when the observations are far from being fully mixed in the graph.

In sections 4-5, we develop the derivation of the Jacobi polynomial iteration. Section 4
describes an optimal way to design polynomial-based gossip algorithms, following the lines of
[12, 9], and discusses its feasibility. Section 5 uses the notion of spectral dimension of a graph
to inspire the practical Jacobi polynomial iteration (1.3).

In section 6, we present the adaptation of the Jacobi polynomial iteration to the case
where the spectral gap v of W is given to improve the asymptotic rate of convergence.

In section 7, we describe the parallel between gossip methods and iterative methods for lin-
ear systems and discuss the contributions that our work can bring to the distributed resolution
of Laplacian systems over networks.

Code. The code that generated the simulations is available online [4].

2. Problem setting. A network of agents is modeled by an undirected finite graph G =
(V,E), where V is the set of vertices of the graph, or agents, and E the set of edges, or
communication links. We assume each agent v holds a real value &,. Our goal is to design
an iterative algorithm that quickly gives each agent the average & = (1/n) > vev vy Where
n = |V is the number of agents. A fundamental operation to estimate the average £ consists
in averaging the observations of neighbors in the network. We formalize this notion using a
gossip matrix.

Definition 2.1. A gossip matrix W = (Wy,)vwev on the graph G is a matriz with entries
indexed by the vertices of the graph satisfying the following properties:
o W is nonnegative: for all v,w eV, W, > 0.
o W is supported by the graph G: for all distinct vertices v, w such that Wy, > 0, {v,w}
must be an edge of G.
o W is normalized: for allv €V, ZweV Wyw = 1.
o W is symmetric: for allv,w €V, Wy = Wy .

If W is a gossip matrix and x = (zy)yev is a set of values stored by the agents v, the
product Wz is interpreted as the computation by each agent v of a weighted average of the
values z,, of its neighbors w in the graph (and of its own value x,). This average is computed
simultaneously for all agents v; indeed, in this paper we deal only with synchronous gossip.
Note that we do not need the symmetry assumption on W to interpret W as an averaging
operation. This assumption is usual in gossip frameworks as it allows one to use the spectral
theory for W, on which our analysis relies heavily. It appears, for instance, in the works
[6, 7, 25].

In a d-regular graph G (Vv,degv = d), a typical gossip matrix is W = A(G)/d =
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(Ligvwier}/d)vwev, where A(G) is the adjacency matrix of the graph. More generally, if
the graph has all vertices of degree bounded by some quantity dmax, then a natural gossip
matrix is

1
(2.1) Wo=1I+

(A_D)7

dm ax

where D is the degree matrix, which is the diagonal matrix such that D, , = degwv.
Note that any gossip matrix W is an operator on R bounded by 1. Indeed, if 2 € R,
by Jensen’s inequality,

2
Walp =Y ot = 3 (3 Wowe) € 30 % Wl = 3 o = ol

veV veV NweV veV weV weV

Definition 2.2 (spectral gap). Denote byl > X 1 > Ao > ... > A, = —1 the real eigenvalues
of the symmetric matric W. As W is normalized, W1 = 1; we can take \y = 1, which
corresponds to the eigenvector 1 = (1,...,1). We define

1. the spectral gap v =1 — Ao as the distance between the two largest eigenvalues of W ;

2. the absolute spectral gap ¥ = min(1 — Ag, A, + 1) as the difference between the moduli

of the two largest eigenvalues of W in magnitude.

We now discuss different iterations for the gossip problem.

Simple gossip. Simple gossip is a natural algorithm solving the gossip problem that
consists in repeatedly averaging values in the graph [6]. More precisely, we choose a gossip
matrix W on the graph G, initialize 2° = ¢ = (£,).ev, and, at each communication round ¢,
compute

(2.2) gt = Wat.

Note that the latter equation is simply a compact rewriting of (1.1). We can rewrite this
iteration as 2! = W', Note that in this last equation, we used the notation .! to denote both
the index of x and the power of the square matrix W. We will frequently make use of the
indexation .! when vectors indexed by the vertices (or the edges) also depend on time.

We describe the speed of convergence of this method using ideas from [6].

Proposition 2.3. Let & be an arbitrary family of initial observations and x! the iterates of

simple gossip defined by (2.2). Denote by 7 the absolute spectral gap of W. Then

1/t N

lim sup th — §_1H2 <1—-7.
t—00

Moreover, the upper bound is reached if and only if there exists an eigenvector u of W, corre-
sponding to an eigenvalue of magnitude 1 — 7, such that (&, u) # 0.

Proof. Let u! = 1/\/n,u?,...,u"™ be the eigenvectors of W associated to the eigenvalues
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A1, -+ An, normalized such that |Ju’[s = 1. Then
n 2 n 2
" = €113 = [W'e = £113 = | D X6, uhu' — (& ulhul | = |3 N(g ')’
i=1 2 =2 2
- iy, 02 - i < - i
<D NG uhutlly = Y Mg ) < (=) Y (6w N
i=2 i=2 i=2

Shift-register gossip. Several acceleration schemes of gossip [7, 25] store some past
iterates to compute higher-order recursions (that thus depend on powers of W). For instance,
the shift-register iteration of [7] is of the form

(2.3) 2 =¢, ol =We, e =oWat + (1 —w)at™t,

where w is a parameter that needs to be tuned.

Proposition 2.4 (from [16, Theorem 2]). Let§ be an arbitrary family of initial observations
and z' the iterates of shift-register gossip defined in (2.3) with parameter

L= VA =3/
(1-7/2*

where 7 is the absolute spectral gap of the gossip matriz W. Then

§ S0 —5/4) — 7/2
limsup||xt—§1\|é/t<1—2 V(L= 5/4) 7/.

t—o00 1_5/

Moreover, the upper bound is reached if and only if there exists an eigenvector u of W, corre-
sponding to an eigenvalue of magnitude 1 — 7, such that (&, u) # 0.

The important consequence of this result is that the rate of convergence of the shift-register
method behaves like 1 — 2./3 + o(v/7) as 4 — 0. This differs from simple gossip where the
rate of convergence behaves like 1 — 4. This means that in graphs with a small spectral gap,
shift-register enjoys a much better rate of convergence than simple gossip: this is why we say
that shift-register enjoys an accelerated rate of convergence as opposed to simple gossip which
has a diffusive or unaccelerated rate. This effect on the asymptotic rate of convergence can
be seen in Figures 2 and 3.

Polynomial gossip. More abstractly, we define a polynomial gossip method as any
method combining the past iterates of the simple gossip method:

(2.4) vt = P(W)E,

where P, is a polynomial of degree smaller than or equal to ¢ satisfying P;(1) = 1. The
constraint P;(1) = 1 ensures that ! = £1 if all initial observations are the same, i.e., £ = £1.
The constraint deg P; < t ensures that the iterate 2! can be computed in ¢ time steps. Simple
gossip corresponds to the particular case of the polynomial P;(\) = A!. Shift-register gossip
is a polynomial gossip method whose corresponding polynomials can be expressed using the
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(a) Grid (b) Percolation bond (¢) Random geometric graph

Figure 1. The three types of 2D graphs considered in simulations.

Chebyshev polynomials (see Proposition SM8.4). The method (1.3) will be derived as the
polynomial iteration corresponding to some Jacobi polynomials.

In this paper, we design polynomial gossip methods whose polynomials P;, ¢t > 0, satisfy
a second-order recursion. This key property ensures that the resulting iterates 2t = P,(W)¢
can be computed recursively.

3. Simulations: Comparison of simple gossip, shift-register gossip, and the Jacobi
polynomial iteration. In this section, we run our methods on grids, percolation bonds, and
random geometric graphs; the latter is a widely used model for real-world networks [23,
section 1.1]. In each case, we consider both the two-dimensional (2D) structure and its three-
dimensional (3D) counterpart. We refer the reader to Figure 1 for visualizations of the 2D
structures and to section SM1 for details about the parameters used.

We compare our Jacobi polynomial iteration (1.3) with the simple gossip method (1.1)
and the shift-register algorithm (1.2). We found experimentally that the behavior of the
shift-register algorithm was typical of methods based on the spectral gap such as the splitting
algorithm of [25] and the Chebyshev polynomial acceleration scheme [2, 27]; to avoid redun-
dancy we do not present the similar behavior of these methods. We also compare with local
averaging, which is given by the formula

1
t _
xv_ |Bt(’0)| Z gwa

wE B (v)

where |B;(v)| denotes the ball in G, centered in v, of radius ¢, for the shortest path distance.
Note that local averaging does not correspond in general to any computationally cheap it-
eration, as opposed to the algorithms we present here. Thus it should not be considered as
a gossip method, but rather as a lower bound on the performance achievable by any gossip
method. (This is made fully rigorous in the statistical gossip framework of section SM?7.)

In our simulations, we change the graph G that we run our algorithms on, but we always
sample &, ~; ;4. N(0,1),v € V, and measure the performance of gossip methods through the
quantity ||2* —£1|2/y/n. Thus the performance of the algorithms is random because the initial
values £, are random, and also because percolation bonds and random geometric graphs are
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random. The results we present here are averaged over 10 realizations of the graph and the
initial values, which is sufficient to give stable results.

Tuning. The optimal tuning of the shift-register gossip method as a function of the
spectral gap was determined in [16, Theorem 2]; it is given by the formula (2.4); this is the
tuning that we use in our simulations. The Jacobi polynomial iteration is tuned by choosing
d = 2 in the 2D grid, 2D percolation bonds, and 2D random geometric graphs, and d = 3 for
their 3D analogues.

Interpretation of the results. The results of the simulations are exposed in Figure
2. The qualitative picture remains the same across different graphs. Simple gossip performs
better than shift-register gossip in a first phase, but in a large ¢t asymptotic, simple gossip con-
verges slowly whereas shift-register gossip converges quickly. The Jacobi polynomial iteration
enjoys the quick diffusion of simple gossip in the first phase and reaches the full mixing be-
fore shift-register gossip. As a consequence, the Jacobi polynomial iteration gets considerably
closer to the local averaging optimal bound, especially in very regular structures like grids.

These results should be mitigated with the large ¢ asymptotic: in Figure 3, we show the
comparison of gossip methods on a longer time scale, in linear and log-scale y-axis. We only
present the results on the 2D grid as they are typical of the behavior on other structures. We
observe that shift-register gossip enjoys a much better asymptotic rate of convergence than
simple gossip and the Jacobi polynomial iteration.

Methods that use the spectral gap are designed to achieve the best possible asymptotic
(see [7], [25]); thus the above observation is not surprising. These methods, however, fail in
the nonasymptotic regime, where they are outperformed by the Jacobi polynomial iteration
and simple gossip. We believe that in applications where a high precision on the average
is not needed, the Jacobi polynomial iteration brings important improvements over existing
methods, let alone the fact that it is considerably easier to tune. However, in section 6, we
present a Jacobi polynomial iteration that uses the spectral gap of the gossip matrix to obtain
the accelerated convergence rate.

4. Design of best polynomial gossip iterations. We now turn to the design of efficient
polynomial iterations of the form z! = P;(W)£. An important result of this section is that
the best iterates of this form can be computed in an online fashion as they result from a
second-order recurrence relation.

The approach presented in this section is similar to [9, section 3.3], although therein it is
applied to the slightly different problem of load balancing. We repeat here the derivations as
we take a slightly different approach: here we derive the best polynomial P, with fixed W and
¢, while in [9] the matrix W is fixed, but a polynomial P; efficient uniformly over ¢ is sought.
We then discuss why the resulting recursion may be impractical. The next section introduces
some approximation of the impractical scheme that leads to the practical iteration (1.3).

Our measure of performance of a polynomial gossip iteration is the sum of squared errors
over the agents of the network:

E(P) = (), — &) = |la" = €13 = [|IP(W)E — €13

veV

Denote by A1, Ag, ..., A, the real eigenvalues of the symmetric matrix W and by u!,u?, ..., u"
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Figure 2. Performance of different gossip algorithms running on graphs with an underlying low-dimensional

geometry, as measured by ||zt — £1||2/v/n.

the associated eigenvectors, normalized such that ||u’||2 = 1. The diagonalization of W gives
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Figure 3. Performance of different gossip algorithms running on the 2D grid.

the new expression of the error

n 1 n
41 E(R) =) (&u)’Ri(N)? = / P(Ado(X),  do(A) = (& u)%,,
=2 -1 =2
where (.,.) denotes the canonical scalar product on R™ and d is the Dirac mass at A.
The polynomial 7y minimizing the error £(F;) must be chosen as

1
(4.2) T €  argmin / P(\)%do()).
P(1)=1,deg P<t

We now show that the sequence of best polynomials my, 71, 72,... can be computed as
the result of a second-order recursion, which leads to a second-order gossip method, whose
coefficients depend on o. As noted in [7], having iterates z' that satisfy a low-order recurrence
relation is valuable as it ensures that they can be computed online with limited memory cost.
In order to prove this property for our iterates, we use that these polynomials are orthogonal
with respect to (w.r.t.) some measure 7.

Definition 4.1 (orthogonal polynomials w.r.t. 7).  Let 7 be a measure on R with finite
moments. Endow the set of polynomials R[X] with the scalar product

/P dr(\).

Denote by T € N U {oco} the cardinal of the support of 7. Then there exists a family
mo, M1, .-, T7—1 Of polynomials, such that for oll t < T, my,m1,...,m form an orthogonal
basis of (R;[X],(.,.),), where R;[X] denotes the set of polynomials of degree smaller than or
equal to t. In other words, for all s,t < T,

degm =1t, (mg,m),. =0 if s#£t.
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my, M1, ..., Tp_1 1S called a sequence of orthogonal polynomials w.r.t. 7. Moreover, the family
of orthogonal polynomials my, w1y, ..., mp_1 is unique up to a rescaling of each of the polyno-
mials.

An extensive reference on orthogonal polynomials is the book [29]. An introduction from
the point of view of applied mathematics can be found in [13]. In section SM2, we recall
the results from the theory of orthogonal polynomials that we use in this paper. The next
proposition states that the optimal polynomials sought in (4.2) are orthogonal polynomials.

Proposition 4.2. Let o be some finite measure on [—1,1], and let T € N U {oo} be the
cardinal of Suppo — {1}. For 0 <t < T — 1, the minimizer 7, of

1
min / P(\)2do(N)
P(1)=1,deg P<t J_1

1s unique. Moreover, mg,...,mp_1 1S the unique sequence of orthogonal polynomials w.r.t.

dr(A) = (1 — X\)do(N) normalized such that (1) = 1.

This result is well known and usually stated without proof [21, sections 3, 4.1], [22, section
2]; we give the short proof in section SM4. In the following, the phrase “the orthogonal
polynomials w.r.t. 77 will refer to the unique family of orthogonal polynomials w.r.t. 7 and
normalized such that m(1) = 1.

Remark 4.3. When T is finite and ¢ > T, finding a minimizer of fil P(X\)2do(N) over the
set of polynomials such that P(1) = 1, deg P < t is trivial. Indeed, one can consider the
polynomial

_ HA’ESuppJ—{l}()\ - )\/)
H)\’ESuppa—{l}(l - )‘,)

which is of degree T, satisfies 7p(1) = 1, and f_ll 7r(A)2do(N\) = o({1}). This is the best
value that a polynomial P of any degree, such that P(1) = 1, can get.

()

A fundamental result on orthogonal polynomials states that they follow a second-order
recursion.

Proposition 4.4 (three-term recurrence relation, from [29, Theorem 3.2.1]). Let mo, ..., 7r—1
be a sequence of orthogonal polynomials w.r.t. some measure 7. There exist three sequences
of coefficients (at)1<i<T—2, (bt)1<t<T—2, and (ct)i1<i<T—2 such that, for 1 <t < T — 2,

7Tt+1()\) = (at)\ + bt)ﬂ't()\) - Ctﬂ't—l()\) .

The classical proof of this proposition is given in section SM2.1. Taking o to be the
spectral measure of (4.1) in Proposition 4.2, we get that the best polynomial gossip algorithm
is a second-order method whose coefficients are determined by the graph G, the gossip matrix
W, and the vertex v. Indeed, as mg,...,mp_1 is a family of orthogonal polynomials, there
exist coefficients ay, by, ¢; such that

7Tt+1()\) = (at)\ + bt)ﬂ't()\) - ctﬂ't—l()\) y
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and thus
7Tt+1(W) = ath(W) + btﬂt(W) — Ctﬁt_l(W) .

Decomposing 71 (\) = agA + bp and applying the previous relation in & gives the second-order
recursion for the best polynomial estimators z¢ = 7 (W)¢:

(4.3) 2 =¢, ! = agWE + by, o = Wal + bt — et

Note that the dependence of the gossip method on the graph G, the gossip matrix W, and
the vertex v is entirely hidden in the coefficients ay, by, ¢;. Thus the choice of the coefficients
is central. In [9], it is argued that the coefficients can be computed in a “preprocessing
step.” Indeed, the coefficients can be computed in a centralized or decentralized manner, at
the cost of extra communication steps. The gossip method that consists in computing the
optimal coefficients ay, by, ¢; and running (4.3) will be referred to as parameter-free polynomial
iteration, as it does not require any tuning of parameters, by analogy with the terminology
used in polynomial methods for the resolution of linear systems (see [12, section 6]). It
corresponds to the optimal polynomial iteration. For a detailed exposition on the parameter-
free polynomial iteration and a discussion of its practicability, see section SM5.

However, in dynamic networks that are constantly changing, it is not a valid option to keep
repeating the preprocessing step to update the coefficients at, b, ¢;. Our approach consists in
observing that there are sequences of coefficients like (1.4) that, despite not being optimal,
work reasonably well on a large set of graphs. This implies that even if the details of the
graph are not known to the algorithmic designer, she can make a choice of coefficients that
have a fair performance.

More formally, we approximate the true spectral measure o of the graph with a simpler
measure ¢, whose associated polynomials have known recursion coeflicients ay, b, ¢;. We show
that in some cases, substituting the orthogonal polynomials w.r.t. ¢ with the ones orthogonal
to & does not worsen the efficiency of the gossip method much. In the next sections, we argue
for two choices of the approximating measure 6. The first uses only the spectral dimension
d of the network and gives the Jacobi polynomial iteration (1.3). The second uses both the
spectral dimension d and the spectral gap v of W and gives the Jacobi polynomial iteration
with spectral gap.

Figure 4 reproduces Figure 3 and adds the performance of the parameter-free polynomial
iteration and the Jacobi polynomial iteration with spectral gap. It shows that in linear
scale, the performance of the parameter-free polynomial iteration is indistinguishable from
the performance of the Jacobi polynomial iterations with or without spectral gap, which are
obtained through approximations of the spectral measure o. However, the figure in log-scale
shows that the asymptotic convergence of the methods depends on the coarseness of the
approximation. The relevance of this asymptotic convergence to the practice depends on the
application.

Remark 4.5. The shift-register iteration z* = P;(W)¢ defined in (2.3) can be seen as a best
polynomial gossip iteration with some approximating measure. Indeed, the polynomials F;,
t > 0, are the orthogonal polynomials w.r.t. some measure whose support is strictly included
in [—1,1] (see Proposition SM8.5).
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Figure 4. Performance of different gossip algorithms running on the 2D grid.

5. Design of polynomial gossip algorithms for graphs of given spectral dimension.

5.1. The dimension d and the rate of decrease of the spectral measure near 1. We
now assume that we are given a graph G on which we would like to run the optimal polynomial
gossip algorithm (4.3). However, we do not know the spectral measure o or the coefficients
at, by, ¢ In this section, we give a heuristic motivating an approximation & of the spec-
tral measure o using only the dimension d of the graph. The heuristic is supported by the
simulations of section 3 and some rigorous theoretical support in section SM7.

Our approximation is given by the following nonrigorous intuition:

(5.1) the graph G is of dimension d <  o([1—A,1]) ~ CA¥? as A <« 1,

for some constant C'. Of course, we have neither defined the dimension of a graph nor given
a rigorous signification of the symbols ~ and <. We come back to these questions in section
5.3, but for now we assume that the reader has an intuitive understanding of these notions
and finish drawing the heuristic picture.

Intuition (5.1) describes the repartition of the mass of o near 1. This mass near 1 challenges
the design of polynomial methods as the gossip polynomials P are constrained to satisfy
P(1) = 1 while minimizing | P?do. Moreover, eigenvalues of a graph close to 1 are known to
describe the large-scale structure of the graph and thus must be central in the design of gossip
methods. The traditional design of gossip algorithms considered the spectral gap v between
1 and the second largest eigenvalue, a quantity that typically gets very small in large graphs.
Intuition (5.1) also describes the behavior of the spectrum near 1, but on a larger scale than
the spectral gap. It describes how the set of the largest eigenvalues is distributed around 1.

5.2. The Jacobi iteration for graphs of given dimension. When a spectral measure sat-
isfies the edge estimate (5.1), we approximate it with a measure satisfying the same estimate,
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Figure 5. Comparison of the Jacobi polynomial Wél’o)()\) with the polynomial of simple gossip A°.

namely

de(N\) = (1= N2 11 payyda.

Note that we do not elaborate on the normalization of the approximate measure d& as it is only
used to define an orthogonality relation between polynomials, in which the normalization does
not matter. The orthogonal polynomials w.r.t. the modified spectral measure (1 — \)da(\) =
(1-— )\)d/ 21{ ae(—1,1)ydA and their recursion coefficients are known as they correspond to the
well-studied Jacobi polynomials [29, Chapter IV]:

Q= 55 0 he = ——
0 T 202+d)’ 0 T 3erad)
2 24 1)(2 242 2(9 911
(5.2) agd):(ter/ D@42+ @ @+ d/2+1)

2(t+1+d/2)?
(d) _ t2(2t +d/2 + 2)

‘T T 1vd2)22trd2)

b8+ 14+d/2)2(2t +df2)’

These coefficients are derived in section SM6.2. This approximation of the spectral measure
gives the practical recursion

(5.3) ¥ =¢, o'= a(()d)Wf + b(()d)é, gt = agd)Wxt + bgd)xt - cﬁd)xt_l ,

which only depends on d. It is just a rewriting of the Jacobi polynomial iteration (1.3) given in
the introduction of this paper. The Jacobi polynomial Wt(d/ 2’O)(/\) such that 2! = 7rt(d/ 2’0)(W)§
is plotted in Figure 5 with d = 2 and ¢t = 6, along with the polynomial A% associated with

simple gossip. The Jacobi polynomial is smaller in magnitude near 1.

5.3. Spectral dimension of a graph. In this section, we discuss the meaning of intuition
(5.1). There are several definitions of the dimension of a graph.

When referring to the dimension of a graph, many authors actually refer to some quan-
tity d that has been used in the construction of the graph. An example is the d-dimension
grid {1,...,n}%. Another example consists in removing edges in Z¢ with probability 1 — p,
independently of one another. The resulting graph G is called a percolation bond [14]. It
is natural to consider that this graph is of dimension d. A more complicated example is the
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random geometric graph: choose d > 1, sample n points uniformly in the d-dimensional cube
[0, 1]d, and connect with an edge all pairs of points closer than some chosen distance r > 0.
It is natural to say that this random geometric graph is d-dimensional as it is the dimension
of the surface it is built on.

Mathematicians have developed more intrinsic definitions of the dimension of a graph [11];
here we use the notion of spectral dimension. This definition is of interest only for infinite
graphs G = (V, E). Here, we consider only locally finite graphs, meaning that each node has
only a finite number of neighbors. As with Definition 2.1, one can define a gossip matrix W
with entries indexed by V' x V. If GG is infinite, W is a doubly infinite array, but with only a
finite number of nonzero elements in each line and column as the graph is locally finite.

The spectral dimension of a graph G is defined using a random walk on the graph—
typically the simple random walk on G—but here we consider the lazy random walk with
transition matrix W = (I + W)/2. (We take the lazy random walk to avoid periodicity
issues.)

Definition 5.1 (spectral dimension). Denote by p; the probability that the lazy random walk,
when started from v, returns at v at time t. The spectral dimension of the graph, if it exists
and is finite, is the limit

1
dy = dy(G,W,v) = —2 lim —2¢

t—oco Int '

If the graph is connected and W is the transition matrix of the simple random walk, this
definition does not depend on the choice of the vertex v. Motivations for this definition are
as follows.

Proposition 5.2. The spectral dimension of (Z4, W) with W = A(Z%)/d is d.

Proof. The return probability p; of the lazy random walk on Z¢ is equivalent to C/ ¢/2
for some constant C. It is, for instance, a consequence of the local central limit theorem for
random walks on Z? [15, Theorem 2.1.1]. Thus the spectral dimension of Z¢ is d. [ |

The spectral dimension of a graph is related to the decay of the spectrum of W near 1.

Definition 5.3 (spectral measure of a possibly infinite graph). Let G be a graph and W its
gossip matriz. Fizv € V. As W is an auto-adjoint operator, bounded by 1, acting on £2(V),
there exists a unique positive measure o = o(G,W,v) on [—1,1], called the spectral measure,
such that for all polynomial P,

1

(e PW)eay = [ PO,

For a deeper presentation of spectral graph theory, see [19] and references therein. Note
that when the graph G is finite, it is easy to check that the spectral measure is the discrete
measure o (G, W,v) = S°1_ (uf)?5,, where A1, ..., )\, are the eigenvalues of W and u!, ..., u"
are the associated normalized eigenvectors. However, when the graph G is infinite, the spec-
trum may exhibit a continuous part w.r.t. the Lebesgue measure.

Proposition 5.4 (the spectral dimension is the spectral decay). Let G be a graph, W a gossip
matriz on G, and v a vertex. We denote by ds = ds(G,W,v) the spectral dimension and by



ACCELERATED GOSSIP IN NETWORKS OF GIVEN DIMENSION 39

o =o(G,W,v) the spectral measure. Then the limit limy_,oIno([1 — A, 1])/InA exists and is
finite if and only if ds exists and is finite. In that case,

lim Ino([1—A,1)) _ %

A—0 InA 2

This proposition gives a rigorous equivalent to intuition (5.1). It uses the spectral dimen-

sion of the graph, which is an intrinsic property of the graph and turns out to coincide with
our intuition of the dimension of a graph in examples of interest. Note that in section 4, the
spectral measure o is defined as do(\) = Y (&, u?)26,,, whereas in this section it is defined for
finite graphs as do(\) = Y (u)?d,,. Roughly speaking, intuition (5.1) is valid for the former
if € projects evenly on all eigenvectors u'. This is the case if & has random i.i.d. components,
for instance; this is used in section SM7.

Proof of Proposition 5.4. We first assume that [ = lima_olno([1 — A, 1])/In A exists and
is finite. We show that ds exists and that [ = d/2. To this end, we define

. In p; = .. Inp
d, = —21 — ds = —21 f——
= I?iffjp Int ’ s et Tt

where p; is defined as in Definition 5.1. Note that

I t efinition 5.: 1 t
(5.4) pe= <ev,< J;W> ev> (Definitio 3)/<;’\> do(N).

Proof that ds/2 < . Consider [, > I. Then there exists constants c1, co > 0 such that for
all A € [0,2],

([l = A1) = e A = o101 = AL 1)),
where o(+=19)(d)) = (1 — A\)*+~'d\. Then

. 1 ¢ (Lemma SM3.1) el t—1
[_171} 2 —1 2

1
(u=(1+X)/2) ¢ li—14. (SM3.2) ¢4
= 03/0 u'(l—u)*du=c3B(t+1,14) o

ot

(

Dbt

for some constant cz, ¢4 > 0. Thus liminf; ..o lﬁl—p; > —l, i.e., ds/2 < l;. This being true for
all [; > [, this proves d,/2 < I.

Proof that d /2 > 1. Consider [ < [. Then there exist constants C7,C5 such that for all
A €1]0,2],
o([1 — A 1]) < C1A" = G191 - AL 1)),

where o(==19(d)\) = (1 — A)*>~1d\. Then

5. 1 t (Lemma SM3.1) 1/ t
[_Ll} 2 1 2
(u=(141)/2)

1
= 03/ ut(l—w)-"tdu=C3B(t+1,1_) ~ Ca
0

t—o00 tf
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for some constants C3, Cy. Thus limsup,_, lﬁl’? < —I_, which implies d,/2 > [_. This being
true for all [_ < [, this proves d,/2 > I.

Finally, we have proven | < d,/2 < ds/2 < I. Thus the limit dy = —2lim;_,o, Inpy/Int
exists and is equal to 2I.

Conversely, we assume now that dg exists and is finite. We show that [ = limp_,gIno([1 —
A, 1])/In A exists and that [ = dg/2. To this end, we define

Ino([1—A,1]) _— Ino([1—A,1])
f— =1 _
b= lzr\n—}%)l In A ’ ! IT_S;EP In A

Proof that [ > ds/2. For any t € N, we have

s )
=

thus, by integrating against do(\),

o[l — A1) < (1-) t/
)
t

Ino([1—A,1)) lnf(% ltU(d)\) Inz  tln (1—%)
- :

InA InA InA

We choose t(A) = |[A~!]. Then we get
Ino([1—A,1]) ds ds
b=liminf =% 25D -0=5

Proof that | < dg/2. For any t € N, we have ((1+)/2)" — (1 — A/2)" < 1(551_ny; thus,
by integrating against do(\),

/ <1+2)\>tda()\) - <1 - g)t <o([1-A 1),

Let d > ds. There exists a constant ¢ > 0 such that [((1+ X)/2)!do(\) > ¢/t%/2. Then

In (tdc/Q - (1 - ;\)t> <Ino([l—A,1]).

Let a > 1. We choose t(A) = [A~%|. Then

(1 8Y e (st (1 2)) <o (152) son(337)

decreases superpolynomially fast as A — 0. Since ct(A) ™% ANo cA®Y/2 it yields
H
_—_— Ino([1—A, 1])
=1 — = .
et A 2

As this is true for all a > 1,d > d, we have | < dg/2.

Finally, we have proven that ds/2 < I < [ < ds/2. Then the limit [ = limy_,oIno([1 —
A, 1])/In A exists and | = d/2. [ ]
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Proposition 5.4 allows us to prove the following generalization of Proposition 5.2.

Proposition 5.5 (spectral dimension of the supercritical percolation cluster). Let Gy be a
supercritical percolation bond in Z¢ with edge probability p € (pe, 1]; i.e., a.s., there is an
infinite connected component G in Gy. Endow G with the gossip matric W = I+ (A—D)/(2d),
where A and D are, respectively, the adjacency and the degree matrices of G. Fiz v € 7.
Then a.s. on the event {v € G}, ds(G,W,v) = d.

This proposition suggests that the spectral dimension is unrelated to the small-scale struc-
ture of the graph.

Proof of Proposition 5.5. The return probabilities of the random walk on the supercritical
percolation cluster have rather been studied in continuous time. The continuous-time random
walk is defined as follows: the random walk at w waits at an exponential time of parameter 1
before picking a site w’ out of the 2d neighboring sites uniformly randomly. If there is an edge
in the percolation configuration between w and w’, the random walk jumps to w’; otherwise
it stays in w and starts again. Denote by X; the continuous-time random walk and by P,, the
probability w.r.t. this random walk when it is started from some vertex w.

Lemma 5.6. There exist two constants ¢ = ¢(d,p),C = ¢(d,p) > 0 such that, a.s. on the
set {v € G}, there exists a random time to such that for t > to,

c C
7<Pv(Xt:U)<td7-

Proof. The upper bound is proved in [17, Theorem 1.2]. As noted in [5, Lemma 5.1], the
lower bound can be proved using a central limit theorem on X;; we repeat the argument here
as our random walk differs slightly from theirs. As X; is reversible w.r.t. the uniform measure
on G,

Py(Xo = v) = Z]P’ (Xy = w)Py(X; =0v) = Z]P’ (X, = w)?

By the Cauchy—Schwarz inequality,

Po(1X: = vlle < VB2 = (3 LjumyuevpyPulXe = ”“"))2
zeG
< ’{”g; €G:z—u|s< \/i}] ( D Py(X = w)2)

weG
g Cltd/ZPv(XQt = 7))

for some constant C;. Now, using [1, Theorem 1.1(a)], there exists a deterministic variance o2

such that the law of (X; — v)/v/t converges a.s. on the event {v € G} to a centered Gaussian
with variance 2. Thus there exist a deterministic constant ¢; > 0 and a random time #; such
that for ¢t > t1, Py(||X; — v||2 < V/#)? > ¢1. This finishes the proof of the lower bound. [ ]

We now finish the proof of the proposition using Lemma 5.6. If u* denotes the law of X,
we have %E [,ut} = (W — I)pt. This yields pf = /W=D 10 which implies

Py(X; = ) = (6, i) = (8, eV, y PefmiLion 59 / 'O Ddo()).
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As a consequence, Lemma, 5.6 translates into bounds on the Laplace transform of o: a.s. on
{v € G}, for t large enough,

Some bounds on the spectral density of ¢ near 1 easily follow (see [20, Lemma 4.5]): there
exist constants ¢, C’ > 0 such that a.s. on {v € G}, for A small enough,

AV < o([1— A 1)) < CTAY2,

The proof is finished using Proposition 5.4. |

In section SM7, we prove some performance guarantees of the Jacobi polynomial iteration
(1.3) under the assumption that the graph has spectral dimension d. As a corollary, we get
performance results on two types of infinite graphs: the d-dimensional grid Z? and supercritical
percolation bonds in dimension d. This supports that the iteration (1.3) is robust to local
perturbations of a graph.

6. The Jacobi polynomial iteration with spectral gap. In this section, we adapt the
Jacobi polynomial iteration to the case where the spectral gap v of the gossip matrix W is
given. This allows us to obtain accelerated asymptotic rates of convergence, which compete
with the state-of-the-art accelerated algorithms for gossip.

We assume that we are given the spectral dimension d of the graph, which determines the
density of eigenvalues near 1, and the spectral gap v = 1 — Ao(W), the distance between the
largest and the second largest eigenvalues. Given these parameters, we can approximate the
spectral measure of W with

d5(N) = (1= 7) = N> e 11 qydA.

Following the recommendation of Proposition 4.2, this means that we should consider the
polynomial iteration associated with the orthogonal polynomials w.r.t. (1 — A)da(A) = (1 —
AN((1—=7)— )\)d/zfll{)\e(_l,l_v)}d/\. We do not know how to compute the recurrence formula
for this measure; thus we used the orthogonal polynomials w.r.t. ((1 —~) — A)da(A) = ((1 —
v)— )\)d/ 21 {\e(~1,1—)}dA, which is a rescaled version of a Jacobi measure. The corresponding
polynomial method is called the Jacobi polynomial iteration with spectral gap.

A recursive formula for orthogonal polynomials w.r.t. ((1 — ) — A\)da(A) is derived in
section SM6.3. Taking o« = d/2 and 8 = 0 in equations (SM6.3), and using the coefficients
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aﬁd) bgd) , c,gd) defined in (5.2), we get the recursion

?

t
t_ Y
x =5
Yy =€, dp=1,

gl =aWe b e, 6 = a4

(61) yt+1 — (dv'Y)Wyt + b(dﬂ’y) t _ C§d77)yt_1 , t 2 1 s
Sey1 = ( (@) 4 b( ’7)) 0 — cgd’7)5t,1, t=>1,
d. d 7\ 1 d, 4 | SANEINC
o =a?(1-3) . W=+ 3(1-3) W? tz0,
ngn) = ng) , t>1.

Theorem 6.1 (asymptotic rate of convergence). Lety > 0 be a lower bound on the spectral
gap of the gossip matriz W, and let d be any positive real. Let & = (& )vev be any family
of initial observations and xt = (x!),cv be the sequence of iterates generated by the Jacobi
polynomial iteration with spectral gap (6.1). Then

1-9/2

(14 /7/2)?

This shows that the Jacobi polynomial iteration with spectral gap enjoys linear conver-
gence. The asymptotic rate of convergence is equivalent to 1 — /2y as v — 0. This justifies
that we obtain an accelerated asymptotic rate of convergence that compares with the state-
of-the-art accelerated gossip methods (see Figure 4).

hmsup |lz* — £1HI/t <

Proof of Theorem 6.1. In this section, we use the notation of section SM6.3. As x! =

WEd/Q,O,"/) (W)

&, we have

_ n 2 (d/2.0, _ /2.0, 2
(62) o' =13 = D06 u?m VOV < e - EUR( s POV

=2 Ae[—1,1-7]

where Ag, ..., \, are the eigenvalues of W different from 1 that lie in [-1,1 — 5] by definition

of v, and u?,...,u" are the corresponding normalized eigenvectors.
V0 < g e IR0
I ey
- ‘ (d/2,0) 1( )\ )\Es[lill),l] ’Wtd/z’o)()\)\
(63) - - sup_ [P0 (),

‘ pL/20) ( w/g)’ Ae[-1,1]
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where Pt(a’ﬂ ) is the Jacobi polynomial; see section SM6.2. By Proposition SM2.6,

2
(6.4) p (P00 = () e
AE[-1,1] t t—o0
and by Proposition SM2.9 applied in z = }fzﬁ, there exists ¢ > 0 such that
t
(6.5) pld/2.0) 1+9/2\ =172 (1+/7/2)? _
¢ 1—7/2) t=oo 1—7/2

Combining (6.3), (6.4), and (6.5), we get that there exists a constant C' such that

t
(4/2,0,7) @2 1—7/2
sup |m N < Ct ( ,
Ael-1i—a] (1+v//2)?

and we conclude using (6.2). [ |

Note that the asymptotic rate of convergence does not depend on d. However, the choice
of d may have an important effect during the nonasymptotic phase ¢ < 1/,/7. In this phase,
the spectral gap + can be neglected in the approximation of the spectral measure, and it
is important that the densities of eigenvalues of ¢ and 6 match near the upper edge of the
spectrum. This is why one should choose d as the spectral dimension of the graph.

In sections 5 and 6, we have used the polynomial point of view to build gossip algorithms
suited to our priors on the graph structure (spectral dimension and spectral gap). In the sup-
plementary material (section SM9), we reverse-engineer the message passing gossip iteration
of [18] through the polynomial point of view. We show that this algorithm can be interpreted
as an inner-product free polynomial iteration corresponding to a tree prior. This point of view
allows us to derive convergence rates of the message passing gossip on regular graphs. This
suggests that the polynomial point of view can be used more generally to analyze existing
gossip algorithms.

7. The parallel between the gossip methods and distributed Laplacian solvers. There
is a natural parallel between gossip methods and iterative methods that solve linear systems.
Loosely speaking, simple gossip corresponds to gradient descent on the quadratic minimization
problem associated to the linear system, shift-register gossip to Polyak’s heavy-ball method,
and the parameter-free polynomial iteration to the conjugate gradient algorithm (see [12] or
[24] for references on these subjects). In this parallel, the fact that we can reach perfect gossip
in n steps (see Remark 4.3) translates into the finite convergence of the conjugate gradient
algorithm in a number of iterations equal to the dimension of the ambient space. In the
distributed resolution of linear systems, the problem that the recursion coefficients a;, by, ¢;
cannot be computed in a centralized manner has also appeared, and it has motivated the
development of inner-product free iterations.

The Jacobi polynomial iterations presented above were motivated by the facts that (a) the
parameter-free polynomial iteration is not feasible in the distributed setting of gossip, and (b)
the gossip matrix W exhibits a structure due to the low-dimensional manifold on which the
agents live. Interestingly, the literature on multiagent systems deals with some minimization
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problems with the same properties. Examples are given by the estimation of quantities on
graphs from relative measurements, in which the agents v € V try to estimate some quantity
Ty, v € V, defined over the graph, from noisy relative measurements over the edges of the
graph:

gv,w:xv_xw"’_nv,w’ {va}EE-

This problem has applications in network localization, where the x, are the positions of the
agents and the &,, come from measurements of the distances and directions between the
neighbors. It also has similar applications in time synchronization of clocks over networks,
where x, is the offset of the clock of node v, and to motion consensus, where x, is the
speed of agent v. For an introduction to estimation on graphs from relative measurements
and its applications, see [3] and references therein. Note that the quantities z, can only be
determined up to a global constant from the measurements; either we seek the true solution
up to a constant only, or we assume that some agents know their true value.

A natural approach to solving the problem is to determine estimates y, of x, that minimize

% Zv,w Wv,w (51}710 - (yU - yw>)2 )

where W, ,, are some weights on the edges of the graph. Indeed, this corresponds to finding
the maximum likelihood estimator if the noise 7, ,, is i.i.d. Gaussian and W, ,, is the inverse
variance of 7, .. The above minimization problem is a quadratic problem whose covariance
matrix is the Laplacian I — W. It can be solved using gradient descent or spectral gap based
accelerations like the heavy-ball method. However, the conjugate gradient algorithm cannot
be applied here as it involves centralized computations. The Jacobi polynomial iterations
developed in this paper can be adapted to this situation to develop accelerations exploiting
the structure of the Laplacian I — W. Experimenting with how this performs in real-world
situations is left for future work.

8. Conclusion. Gossip methods based on the spectral gap were designed to improve the
slow convergence rate of simple gossip. However, these methods are paradoxically bad at
averaging locally in the intermediate regime before consensus is reached. In this paper, we
propose another acceleration of simple gossip based on (i) the polynomial-based point of view,
which designs iterations that are efficient at all times, and (ii) the Jacobi approximation,
which uses prior information on the spectral dimension of the graph, a more natural property
than the spectral gap.

It would be interesting for future work to better understand the Jacobi polynomial itera-
tion in the asynchronous setting, i.e., when a randomized gossip matrix is used, as this setting
is closer to practical cases.

In general, this paper advocates for the use of the polynomial point of view to design a
gossip algorithm, as it allows us to use different types of prior information about the graph
(spectral gap, spectral dimension, tree-like structure, etc.) and gives tools to prove the con-
vergence of the designed algorithms.

Acknowledgment. The authors thank an anonymous referee for improving the clarity of
this work on the questions of robustness and practicability of this work.
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SUPPLEMENTARY MATERIALS: ACCELERATED GOSSIP IN
NETWORKS OF GIVEN DIMENSION USING JACOBI
POLYNOMIAL ITERATIONS*

RAPHAEL BERTHIER', FRANCIS BACH!, AND PIERRE GAILLARD'

The supplementary material is organized as follows.

— Section SM1 provides the simulation details for Section 3.

— Section SM2 recalls useful results from the orthogonal polynomials theory.

— Section SM3 gives some theoretical tools for the proofs

— Section SM4 proves Proposition 4.2.

— Section SM5 details the implementation of the parameter-free polynomial itera-
tion.

— Section SM6 computes the recursion coefficients of some orthogonal polynomials.

— Section SM7 states some performance guarantees of the Jacobi polynomial itera-
tion under the assumption that the graph has spectral dimension d (d-dimensional
grid Z? and supercritical percolation bonds).

— Section SM8 proves the results of the previous section, but also gives some ro-
bustness guarantees and discusses the tuning of the Jacobi polynomial iteration
in Section SMS8.5.

— Section SM9 shows how the message passing gossip algorithm can be interpreted
as a polynomial gossip algorithm. We give the convergence rate of message
passing in terms of the spectral gap .

SM1. Details of the simulations of Section 3. We recall that the code is
available online [SM1].

2D grid. We run simulations on a 40 x 40 square lattice (n = 1600 vertices)
endowed with the gossip matrix defined in (2.1) with dyax = 4. The results are
plotted in Figure 2A and a 20 x 20 grid is plotted in Figure 1A for visualization.

3D grid. We run simulations on a 12 x 12 x 12 cubic lattice (n = 1728 vertices)
endowed with the gossip matrix defined in (2.1) with dyax = 6. The results are
plotted in Figure 2B.

2D percolation bond. We build a 2D percolation bond by taking a 40 x 40 2D grid,
and keep each edge independently with probability p = 0.6. To avoid connectivity
issues, we consider G the largest connected component of the resulting graph, endowed
with the gossip matrix defined in (2.1) with dynax = 4. The results are plotted in Figure
2¢ and a 20 x 20 percolation bond is plotted in Figure 1B for visualization.

3D percolation bond. We build a 3D percolation bond by taking a 12 x 12 x 12 3D
grid and keep each edge independently with probability p = 0.4. To avoid connectivity
issues, we consider G the largest connected component of the resulting graph, endowed
with the gossip matrix defined in (2.1) with dmax = 6. The results are plotted in
Figure 2D.

2D random geometric graph. We build a 2D random geometric graph G by
sampling n = 1600 points uniformly in the unit square [0,1]?> and linking pairs
closer than 1.5/y/n = 0.0375. To avoid connectivity issues, we consider G the

*Supplementary materials for SIMODS MS#M124482.
TINRIA, SIERRA Project-Team, 75012 Paris, France, and D.I., Ecole Normale Supérieure, 75005
Paris, France (raphael.berthier@inria.fr, francis.bach@inria.fr, pierre.gaillard@inria.fr).

SM1
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largest connected component of the resulting graph. We build a gossip matrix W
on G with the formulas: W,, = max(degv,degw)™! ifv € N(w) and W,, =
1= en() max(degv, deg w)~!. The results are shown in Figure 2E.

3D random geometric graph. We build a 3D random geometric graph G by
sampling n = 1728 points in the unit cube [0,1]® and linking pairs closer than
1.5/n'/3 = 0.125. To avoid connectivity issues, we consider G the largest connected
component of the resulting graph. We build a gossip matrix W on G with the formu-
las: Wy = max((.iegg,deg w)™! ifv € M(w) and W, = 1 — ZweN(u) Wayw- The
results are shown in Figure 2F.

SM2. Toolbox from orthogonal polynomials. In this section, we describe
the tools from the theory of orthogonal polynomials that we use in this paper. The
definition of the orthogonal polynomials 7; w.r.t. some measure 7 is given in Definition
4.1. We start by giving some general properties of orthogonal polynomials in Section
SM2.1. We then describe two parametrized measures with respect to which orthogonal
polynomials can be explicitly described: the Jacobi polynomials, in Section SM2.2,
and the polynomials orthogonal to some measure of the form (1 — A?)1/2/p(\), where
p is some polynomial, in Section SM2.3. We finally give in Section SM2.4 some
asymptotic properties of the Jacobi polynomials as ¢t — co.

SM2.1. General properties.

PROPOSITION SM2.1 (from [SMS8, Theorem 3.3.1]). Let 7 be a family of orthog-
onal polynomials w.r.t. some measure T on some interval [a,b]. Then the zeros of m;
are real, distinct and located in the interior of [a,b].

In Proposition 4.4, it is stated that the orthogonal polynomials satisfy a three-
term recurrence relation. We write here the short proof as it is used in Section SM5.

Proof of Proposition 4.4. The polynomial Am () of the variable A is of degree
t + 1, thus it can be decomposed over the orthogonal basis mo(A), w1 (A), ..., w1 (A):

t+1
(

Ame(A) =) mws(x).

Note that (A, ms)r = [ Ame(A)7s(A\)dT(A) = (74, Ams)r = 0 when s < ¢ — 2 because
in this case Ams(A\) € Ry;—1[X] and m; is orthogonal to R;_1[X]. Thus

<)\7Tta7rt>r <)\7Tt;7rt71>'r
s AN+ — (N + ———————
tH( ) <7rt)7Tt>T t( ) <7Tt—1,ﬂ't—1>r

<)\7Tta7rt+1>7'

AT () =
m( ) <7Tt+177rt+1>7'

T—1 ()\) 9

with the convention m_; = 0. Note that (A, m¢41)+ is non-zero as otherwise it would
imply that Am; is a polynomial of degree smaller or equal to ¢, which is absurd. We
get the recursion formula by denoting

4 — (441, 1 )r b, — (Te41, Tt 1)r (AT, )7
t= N ;= —
A T AT, T\Tt, Tt) 7
(SM2.1) ATy, 1) (Ao, Tog1)r (e, ) 0
¢ — (o1, Tog1) r (ATTe, T 1) 7
;=

-
<>\7Tt77rt+1>7'<77t—1a77t—1>7— ’

SM2.2. Jacobi polynomials.



SUPPLEMENTARY MATERIALS: ACCELERATED GOSSIP IN NETWORKS ... SM3

DEFINITION SM2.2 (from [SMS8, Chapter IV]). Let o, 8 > —1. The Jacobi poly-

B)

nomials Pt(a are the orthogonal polynomials w.r.t. the Jacobi measure

o@D (AA) = (1= N)*(1+ AP Lpe_randA,

normalized such that Pt(a’ﬁ)(l) = (tta)~

EXAMPLE SM2.3 (from [SMS, Section 2.4]).

1. The Chebyshev polynomials T of the first kind are the orthogonal polynomials
w.r.t. ol71/271/2)(dX\) = (1 — A2)~Y2 and normalized such that T;(1) = 1.
They are, up to some rescaling, a family of Jacobi polynomials. They satisfy
the trigonometric formula

T;(cosf) = cos(t) .

2. The Chebyshev polynomials Uy of the second kind are the orthogonal polynomi-
als w.r.t. o/2Y2(AN) = (1—M)Y2 and normalized such that Uy(1) = t 4 1.
They are, up to some rescaling, a family of Jacobi polynomials. They satisfy
the trigonometric formula

sin(t +1)6
sinf

Ut(cos ) =

A remarkable property of the Jacobi polynomials is that their recurrence relation
can be computed explicitly.

PROPOSITION SM2.4 (from [SM8, Section 4.4.5]). Let o, 8 > —1. The Jacobi
polynomials Pto"ﬁ satisfy the three recurrence formula
« (6% 1 1
BP0 =1, PN = S(atB+2A+ (- 5),
2t +1)(t+1+a+ )2t +a+ B8PS ()
= (2t +a+ B8+ D)2t +a+B+2)(2t+a+ B)A+a — BPSD())
—2t+a)(t+B)2t+a+B+2)P ().

ExamMpLE SM2.5. The Chebyshev polynomials of the first and the second kind
satisfy the same recurrence formula, but with different initializations:

To(\) =1, Ti(\) = X, Tii1(\) = 20Ty (\) — To_1(N),
Uo(\) =1, Ur(\) = 2), Uir(N) = 20U (A) — U1 (N) -

PROPOSITION SM2.6 (from [SM8, Theorem 7.32.1]). Let «, 8 > 1/2. Then

Pt(a,ﬁ)()\)‘ _ (t + ma:(a,ﬁ)) .

max
Ae[—1,1]

SM2.3. Polynomials orthogonal w.r.t. (1 — A?)!/2/p()\), p polynomial.
In this section, we present how one can compute the recurrence relation for some
orthogonal polynomials w.r.t. a weight of the form (1 — A?)'/2/p(\), p polynomial.

PROPOSITION SM2.7 (from [SM8, Theorem 1.2.1]). Let p be a real polynomial
of degree | which is non-negative for A\ € [—1,1]. Then there exists a polynomial h of
degree | such that for all real 0, p(cos®) = |h(e*)|.
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PROPOSITION SM2.8 (from [SMS8, Theorem 2.6]). Let p be a real polynomial of
degree | taking positive values on the interval [—1,1], and
(1 _ )\2)1/2
p(A)

Let h be a polynomial of degree | such that p(cos ) = |h(e?)|? (see Proposition SM2.7),
and decompose h(e'?) = c(0) + is(0), c(0) and s(0) real. Then the polynomials

7(dA) = dA.

8(9; Ti+1(cos @)

me(cos0) = ¢(0)Us(cos0) —

are orthogonal w.r.t. T when [ < 2(t +1).

SM2.4. Asymptotics for the Jacobi polynomials. To prove the asymptotic
performance guarantees of the polynomial iterations we build in this paper, we need
the following asymptotic properties of the Jacobi polynomials.

PROPOSITION SM2.9 (from [SMS8, Theorem 8.21.7]). Let o, > —1, and A > 1
a real number. Then there exists a positive constant ¢ = c(a, B, \) such that

(A 2 1)t .

In the special case of the Chebyshev polynomials, we also have similar non-
asymptotic bounds.

LeEMMA SM2.10. For all A > 1, for allt > 0,
(SM2.2) % ()\ +V2 1)t <Ti(N) < ()\ +V/a2 - 1)t :
(SM2.3) ()\ +vVa2— 1)t <UN) < (t+1) (A +vaz— 1)t .

Proof. We start by deriving a classic expression for the Chebyshev polynomials.
The identities

PP ()

C
t—o00 t1/2

sin((t +1)6)

sin 0

T (cos @) = cos(t0), Ut(cosf) =

i

can be interpreted as

z+2z71 227! z4+ 27! A A i0
Tt( 2 >: 2 Ut( 2 B forz=c".

The above equations are equalities of holomorphic functions on the unit circle, it
implies that the identities must be true for all complex numbers z # 0; we use it here
for real numbers z.

For A > 1, write A = (2 4+ 271)/2, 2 > 1. This is equivalent to 2 = A + VA2 — 1.
Then

Zt+2_t 1+Z—2t 1+z—2t ¢
TN = = = (V)

As z > 1,
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This proves the inequalities (SM2.2). Further,

Zt+1 o Zf(tJrl) 1— 2721572 1— 2721572 t
A = t= (A V1)
G:(A) z—2z"1 1--—2 ° 1—272 +
As z > 1,
1— 272t72
1< ——<t+1.
1—272 +

This proves the inequalities (SM2.3). |

PROPOSITION SM2.11 (from [SMS8, Theorem 7.32.2]). Let o, > —1. There
exists two constants C1,Cy > 0 such that,

CO==1/2=1/2 1/t <

0<m/2,
Cot® if0<0<1

(a,8)
P cos ‘ <
) (cos ) { i
SM3. Some basic tools for the proofs.

SM3.1. Comparing integrals using a domination of the cumulative dis-
tribution function.

LEMMA SM3.1. Let 0,7 be two positive measures on some interval [a,b] such that

for all X € [a,b],
(SM3.1) a([A,0]) < 7([A ).

Then for all continuous non-decreasing functions f : [a,b] — Rxg,

FNde) < [ Fdry.
[a,b] [a,b]
Proof. For any u € Rxq, denote A*(u) = min{\|ju < f(\)}.

FNdo(n) = /[ . | taeson f)duda(y

_ /Rw (/[a,b] l{ugf(,\)}da()\)> du = /R%a([/\*(u),b])du.

The proof is finished using (SM3.1) and similar equalities for 7. |

[a,b]

SM3.2. The gamma and beta function. The gamma function I' and the
beta function B are defined as [SM5, Section 5.2, Section 5.12]

oo
I'(z) :/ e “utdu, z>0;
0

['(a)T(b)
I'(a+b)’

The asymptotic ratios of the gamma functions are given in [SM5, Eq. 5.11.12]: for
c,d e R,

1
B(a,b) :/ 57711 — )7 lds = a,b>0.
0

z _
_—Y~Z as z — +00.
z
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This gives the asymptotic of the beta function

(SM3.2) B(a,b) ~ lf))) as a — +00.
a

SM4. Proof of Proposition 4.2. Note first that as dr(A\) = (1 — A)do(\) is a

measure on [—1,1], if Tp,...,7r_1 is a sequence of orthogonal polynomials w.r.t. 7,
then the zeros of the polynomials 7, ..., 77— are located in the interior of [—1,1]
(see Proposition SM2.1). In particular, 7:(1) # 0, t < T. Thus it is possible to
build a family mo = 7o/7o(1),...,mr—1 = Tr—1/7r—1(1) of orthogonal polynomials

normalized to take value 1 at 1, as it is done in Proposition 4.2.
The polynomial 7, satisfies m;(1) = 1 and degm; = t. We now consider some
polynomial @; also satisfying Q;(1) = 1 and deg Q¢ = t, and show that

/ m(V)2do(\) < / QVo(N), e (0 7)o < Q0 Q1o

The polynomial Q); — 7; vanishes at 1 thus there exists a polynomial R;_; of degree
at most ¢ — 1 such that Q;(A) = m(X) + (1 — A)Ri—1(A). Then

(Qt,Qt)o = (Tt, Tt) o + 2(me, (1 = M) Re—1)0 + (1 = N)Re—1, (1 = AN)Ri—1)0 -

Note that (ms, (1 — A\)Ri—1)s = (mt, Ri—1)r = 0 because m; is orthogonal to all poly-
nomials of degree smaller or equal to t — 1 w.r.t. (.,.),. Moreover,

(1= M) By1, (1= NRi_r)o = /(1 ~ 2R, 1 (V2do(2) > 0.

Thus (Qt, Qt)s = (7, Tt)o. This shows that 7, is a minimizer.

We now show that the minimizer m; is unique. There is equality (Q:, Q:)s =
(mt, 7)o if and only if [(1 — X\)?R;—1(N\)?do(N) = 0, i.e. (1 — A)R;—; vanishes on
Supp o. But the cardinal of Supp o is at least T' while (1 — A)R;_; is a polynomial of
degree at most ¢t < T — 1. Thus the equality case is reached if and only if R;_; = 0,

ie. Qt = T¢.

SM5. The parameter-free polynomial iteration. In this section, we give
the details of the implementation of the parameter-free polynomial iteration in a
centralized setting. We explicit the computation of the optimal coefficients a;, b; and
¢¢. It is used in the simulation of Figure 4.

The parameter free polynomial iteration is Eq. (4.3), where the coefficients
ag,be,c, t > 1, are determined in Eq. (SM2.1). The results are repeated here for
convenience:

20 = &, zt = aoWE€ + bo& 2 = atht + bt:rt — cmtil R

= <7Tt+177rt+1>7' b = <7rt+1777t+1>-r<)\77t777t>7— _ <7Tt+177rt+1>7'<>\7rt,7rt—1>7'

= = — t = .
(Ame, meg1)r (ATe, Te1) 7 (T8, Te) 7 (AT, Top1) 7 (=1, Te—1) 7

where 7 = (1 — \)o, o is defined in (4.1). Note that the scalar products that appear
in the formulas for as, b, ¢; can be computed from the iterates z* = m,(W)E, t > 0.
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For instance,

(Mg, 1) r = /)mt()\)ﬂt,l()\)(l —A)do()N)

=Y (6w hm () m () (1= )
=1

= (Wm(W)E, (I — W)me—1(W)E)
= (Wal 't —Wat™t).

Note that the last line requires the computation of a scalar product (.,.) over RV,
which means summing over v € V. This is possible in simulations where we can
centralize the information of the nodes v € V. However in practical situation where
the coordinates of x! are distributed among the nodes, such a computation requires
many additional communication steps. This makes the parameter free polynomial
iteration impractical.

The computation of the other scalar products give

(2t — Wat, Wat) (wl 2=t — Wt

by = —ay (zt, 2t — Wat) €t = (z0= 1, 21 — Wat-1y’
and as a; + by — ¢ = 1 (that follows from (1) = 1 for all ¢), we get for ¢t > 1,
B (' — Wat, Wat) _ (et et t —Wath)
ET T Tt gt — Wty 0 T (gt gt Wty
1 .
il = (Wmt + byt — Eta?t_l) .
1+ bt — G

Similarly, one can compute that

1L 70 w0 (E-WEWE)
o= g (e i) V= e emwe

which gives the initialization of the parameter-free polynomial iteration.

SM6. Computation of the recursion coefficients of some orthogonal
polynomials.

SM6.1. A rescaling lemma for orthogonal polynomials. We start with a
lemma giving the change in the recursion coefficients of orthogonal polynomials when
the underlying measure undergoes an affine transformation. It is used in the next
subsections.

LEMMA SM6.1. Let o be a measure on R, 7y, ..., mr_1 a sequence of orthogonal
polynomials w.r.t. o and

(SMGl) 7Tt+1(A) = (at)\ + bt)ﬂ't()\) - Ctﬂ't_l(A) , t 2 1 y

their recurrence formula (see Definition 4.1 and Theorem /.4).

Let o : X = aX+ B, a # 0 be a linear function and & be the image measure
of o by ¢ (which means that for all measurable set A, 5(A) = o(p~1(A))). Then a
sequence of orthogonal polynomials w.r.t. & is given by the formula

7o) =7, (WI(X)) = (X . 5) .
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These polynomials follow the recursion formula

’ﬁ't+1(>\) - (&tj\ + Et)’ﬂ't(j\) - ét’ﬁ'tfl(;\) 5

Qg 7 a8 ~
ay = —, by = b — —, Ct = Ct .
o «@

Proof. By change of variable,

= /Wt (7 W) s (97 (p(N)) do(N)

_ / T (N m(Ndo(A) = 1y ,

and deg m; = ¢ thus 7o, ..., 771 are orthogonal polynomials w.r.t. . The recurrence
relation for 7; follows by evaluating the recurrence relation (SM6.1) for m; in (A —
B)/a. 0

SM6.2. Jacobi polynomials. Let o, 8 > —1. In this section, we derive, using
the recurrence formula for the Jacobi polynomial Pt(a’ﬁ ) of Proposition SM2.4, a
similar recurrence relation for the polynomials ﬂia’ﬂ ) orthogonal w.r.t. the Jacobi
measure o(®*#) but normalized such that wt(a’ﬂ)(l) =1.

Substituting Pt(o"ﬂ ) = (1) ﬂ't(a’ﬁ ) in the recurrence relation of Proposition SM2.4,
we get

2(t+1)(t+1+a+ﬂ)(2t+a+g)(”1+a> (o)

41 Tet1 (A)

=Q+a+tB+D[2+a+tB+2)(2t+a+B)A+a - B (tta)wﬁa’ﬁ)u)

—2(t+a)(t+B)(2t+ o+ B+2) (t_t“lr a)ﬂt(f’f)(A)-

Using that (¢ + 1) (t':_ﬁ“) = (t+1+a)("}*) and t(tta) = (t+ «) (t_ti'a), we can

divide the above equation by (tta). We get

2t+1+a+B)2t+a+B)(t+1+a)m s ()
=2t +a+ B+ D2t +a+B+2)2t+a+BA+ (a+B)(a— B)r"P (\)
—2t(t+ B)2t+a+ B+2)m P ().

Summing up, we obtain the recursion formula

m(A) =1, m1(\) = aéo"ﬁ))\ + b(()aﬂ) ’
D) = (aga,ﬂ)/\ + bga,m) @B (0 — (B @) (3
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with the recursion coefficients
(ap) _ @+ B+2 (@) _ =B
o 2(14a)’ O T 2(1+a)’
al@h) 2+a+p+1)2+a+B+2)
t 20+ 14+a+8)(t+1+a)

)

(SM6.2) yod) _ @it at B+t B)(a-p)
b2t 1+a+ Bt 1+ a)2t+atB)
@8) _ tt+B)2t+a+pB+2)

(t+1+a+B)2t+a+pB)(t+1+a)
SM6.3. Rescaled Jacobi polynomials. Let o, 5 > —1. In this section, we
determine a recursion formula for the orthogonal polynomials Tl't(a”B " wrt.  the

rescaled Jacobi measure

do @A) = (1 =7) = V)10 + AN Lpae11-qydr,

The polynomials 7\**") are normalized such that =(**) (1) = 1.

Note that, up to a rescaling, do(®#7) is the image measure of the Jacobi measure
do(@?) (defined in (SM2.2)) by the linear function ¢-(\) = (1 —~/2)A — /2. Thus

Lemma SMG6.1 gives a family of orthogonal polynomials Pt(a,ﬁ,'v) w.r.t. do(®#7) and
their recursion formula:

PPV G) =P (071 (V)
Pt(iiﬁ,’v)(j\) _ (aga,ﬂﬁ)j\ + bgaﬁﬁ)) Pt(aﬂﬁ)(j\) _ cgaﬁw)Pt(fiBrv)(j\),

—1 -1
alPM = (o) (1 _ %) L BB — plenh) +1 AR (1 %) G C2

However, the polynomials Pt(o“ﬁ ") are not normalized such that Pt(a’ﬁ M =1, Indeed,
P(O"ﬁ”) = (o"ﬁ) ((1 —~/2)7 (1 —|—’y/2)>. It is difficult to deduce the recurrence

relation for 7r(a B — pleBn) pleBfa) (1) from the recurrence relation for P{*77).

One can circumvent this difficulty by using that the normalization Pt(a’ﬁ ’7)(1) also

follows the recurrence relation

Pt(j_viﬁn)(l) _ (aga,ﬁﬁ) 4 bgaﬁﬁ)) PN (1) = lep) plasdian (1)

Summing things up, we get
(SM6.3)

(@B \) — PPy
Ty ( )* P(a’ﬁﬂ)(l) )
t
P(%ﬁﬁ)(}\) — 17 P(%BKY)( ) — 1,
P(a Bs ’Y)(}\) a(aﬂ DN+ b(a B 7) Pl(a,ﬁ,'v)(l) _ a(()a,ﬁyv) + b(()%ﬁ/)’)
Pt(izlﬁ ) (\) ( By + b(a,ﬁ v ) Pt(a,ﬁ,v) () — Cga,B,V)Pt(t_liﬁﬁ)()\) ’ t>1,
Pt(izlﬁ ) (1) ( (@B b o.B, v)) Pt(aﬁw)(l) _ Cga’ﬁ”Y)Pt(fiﬂﬁ)(l) , t>1,
—1 -1
a{®P) = (@) (1 _ %) A A G ’ZY CHC) (1 _ %) . t>0,

@B ) sy
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These equations give a practical way to compute the polynomials w,ﬁ“’ﬁ ) because all
recursion coefficients can be computed explicitly using the formulas (SM6.2).

SM6.4. Polynomials orthogonal to the modified Kesten-McKay mea-
sure. In this section, we determine the recurrence formula for the orthogonal poly-
nomials 7m; w.r.t. the modified Kesten-McKay measure

_ 1/2
(1= No(T)@N) = 5 (‘“ddz b AQ) U oyt syaryg (VA

The polynomials 7; are normalized such that m(1) = 1.
The measure do(Ty) is, up to a rescaling factor, the image measure of

_ (1 _ )\2)1/2

by the linear map ¢ : A — 2v/d — 1\/d. We thus compute a family of orthogonal
polynomials w.r.t. ¢ and then use Lemma SM6.1.

The orthogonal polynomials w.r.t. & are given by Proposition SM2.8. Following
the cited theorem, we define p(\) = d + 2v/d — 1\ and

plcos ) = 2v/d = Tcosf +d = ("),
() = Vd—1+ ¢ = Vd—1+cosf+i sing .

N————— SN~
:=c(0) :=s(6

=

Then we have the following family p; of orthogonal polynomials w.r.t. 5.
_ s(0)
Pt(cosB) = c(0)Us(cos0) — @Ttﬂ(cos 0),
pe(A) = (Vd =1+ NUA) = T2 (N)

where T; and U; denote the ¢-th Chebyshev polynomial of the first kind and the
second kind respectively. As the Chebyshev polynomials 7; and U; both satisfy the
same recurrence relation

Tt+1<>\) == 2)\Tt()\) - thl()\) 5

Uir1(N) = 20U (N) = Uga(N), t>1,

the same relation follows for p;:

Pir1(A) = 20pc(N) = pe—1(N), t>1,

with initial condition po(A) = vd — 1 and p1(N) = 2v/d — 1A + 1.
Lemma SMG6.1 gives the rescaled orthogonal polynomials p,(\) = p; (o1 (N))
w.r.t. do(Ty):

(SM6.5)

d
po(A)=vd—-1, pi(A)=dr+1,

Py e p——
pt+1( ) m
As 7 (A) = pe(N)/pe(1), it now remains to compute ps(1). The sequence p:(1), t > 1
satisfies a second-order recurrence relation with fixed coefficients, it thus can be solved
explicitly

Ape(A) =pi-1(A), t>1.

1 _
pi(1) = = (dld = 1)**D/2 = 2(d = 1)(=072) |
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By substituting ps(\) = pi(1)m(A) in (SM6.5), one obtains

mo(\) =1, m1(A) = ap) + by, Tep1(A) = adme(A) —eeme1(A),  t =1,

d ; 1

aO*d_i_la O*d_i_la
4 —2(d—1)~(t+D A —2d-1)""

ar = 2 - ; o = 5 — , t>1.
1—2(d—1)-0+D 1—2(d—1)~0+D

SMT7. Performance guarantees in graphs of spectral dimension d. In
this section, we seek to give theoretical support to the empirical observations of Sec-
tion 3: Jacobi polynomial gossip improves on the non-asymptotic phase over existing
methods. This is challenging because the analysis of gossip methods is simpler in the
asymptotic regime. In our case, we use asymptotic properties of the Jacobi polyno-
mials as ¢ = oo.

In order to be able to run an asymptotic analysis without falling in the asymptotic
phase of exponential convergence, we run our method on infinite graphs G = (V, E).
In infinite graphs, it is impossible for information to have reached every node in any
finite time. In practice, the conclusions drawed on infinite graphs should be taken as
approximations of the behavior on very large graphs.

Of course, it is impossible for any gossip method to estimate the average of the
values in the infinite graphs: indeed, within time ¢ the node v can only share infor-
mation with nodes that are closer than ¢ (w.r.t. the shortest path distance in the
graph). Even worse, the average of an infinite number of values is ill-defined. Thus
additional assumptions on the observations £, are needed. Several choices could be
possible here, to keep the discussion simple we assume that the observations &, are
independent identically distributed (i.i.d.) samples from a probability law v. The
agents then seek to estimate the statistical mean p = [, £dv(€) of v.

In practice, to build good estimates, the nodes should average their samples, thus
it is natural to run gossip algorithms in this situation. An estimator performs well
if it averages a lot of samples and averages them uniformly. Thus the mean square
error (MSE) of the estimators measures the capacity of a gossip methods to average
locally in the graph.

This statistical gossip framework was already present in [SM2] and is not only used
for its technical advantages. It is also a reasonable modeling of gossip of signals with a
statistical structure in large networks. For instance, in sensor networks, observations
are measurements of the environment corrupted by noise. The purpose of the gossip
algorithm is to average observations to get a better estimate of the ground truth. This
statistical structure simplifies the underlying gossip problem: good estimates of the
mean may not require using observations from nodes extremely far in the network.

Let us now sum up the setting. The network of agents is modeled by a (possibly
infinite, locally finite) graph G = (V, E), that we endow with a gossip matrix W. We
consider a probability law v on R, and p = [ £ dv(§) its statistical mean. Each agent
v € V is given a sample from v:

Ep,veV ~ v,
iid.

The following theorem gives the asymptotic MSE of the estimators built by the simple
gossip method and the Jacobi polynomial iteration.
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THEOREM SMT7.1. Fiz a vertex v and denote ds = ds(G, W, v) the spectral dimen-
siton of the graph.
1. Let xt be the iterates of the simple gossip method (2.2), or the iterates of the
shift-register gossip method (2.3) with some parameter w € [1,2]. Then

t N2
(SM7.1) lim inf L@y Z 17 ds

t—o0 h’lt 2 ’
2. Let x* be the iterates of the Jacobi polynomial iteration (5.3) with parameter
d=ds. Then
InFE t 2
(SM7.2) lim sup InEl@, = p)7] < —ds.

t—00 Int

See Section SM8 for a proof. The above theorem shows that the asymptotic
MSE of the Jacobi polynomial iteration can be upper bounded using the spectral
dimension of the graph. The power decay of the MSE with the Jacobi polynomial
iteration enjoys a better rate than with simple gossip and the shift-register iteration
(regardless of the choice of w). Note that our bound (SM7.2) depends on 7 only
through the spectral dimension of 7, implying that the Jacobi polynomial iteration is
robust to the smaller-scale structure of the graph.

In some cases, this rate can be proved optimal using the Hausdorff dimension of
the graph.

DEFINITION SM7.2 (Hausdorff dimension). The Hausdorff dimension of the graph
G at vertex v is, if it exists, the limit

dh = dh(G, 'U) = lim w

t—o0 Int

If G is connected, then dy, does not depend on the choice of v.

PROPOSITION SM7.3. Let 2t = P,(W)E be any polynomial gossip method on a
graph G with Hausdorff dimension dy,. Then

t 2
(SM7.3) lim inf LT = 1))
t—00 Int
Proof. Note that the intuition lying behind the proposition is very simple: the
unbiased estimator z!, are linear combination of observations corresponding to vertices
in the ball B, (t), thus it must have variance greater than var v/|B,(t)| ~ var v/t%.
A more rigorous argument goes as follows: using that W is a gossip matrix, it is
easy to show by induction that for all s > 0 and v,w € V, if (W?#),, > 0, then there
exists a path of length s linking v to w in G. As deg P; < t, this implies that P,(W)e,
has at most |B,(t)| non-zero entries. Furthermore, the entries of P;(WW)e, sum to 1
because W1 =1 and P;(1) = 1. Thus, using the Cauchy-Schwarz inequality,

2 2
1= (Z (Pt(W)ev)w> = (Z (Pt(W)ev)wl{(Pt(W)ev)w>0}>

weV weV

2 2
<P (Wewllzivy D Lipiwien)ws0y < IB(W)eullizvy | Bu(t)]
weV

(Lemma SM8.1)
= E[(x}, — 1)°]| Bo()].
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Thus

t _ 2
fimint PEE = 0] e RIBOL
t—o0 Int t—o0 Int

Note that this lower bound it attained if 2 is the local average of values:

1
t __
"= B 2 S

wE By (v)

Thus reaching this lower bound means that the polynomial gossip method averages
locally. Theorem SM7.1 shows that it is the case with the Jacobi polynomial iteration
ifd=ds; =d,.

COROLLARY SM7.4. Assume that the spectral and the Hausdorff dimensions have
the same value d = dj, = d,. If x* are the iterates of the Jacobi polynomial iteration
(5.3), we obtain the optimal asymptotic convergence rate

InkE t 2

t—00 Int

Application to the grid. Proposition 5.2 states that the spectral dimension of Z¢
is d, which coincides the Hausdorff dimension.

COROLLARY SMT7.5. Let xt be the iterates of the Jacobi polynomial iteration (5.3)
on the grid Z*. Then we obtain the optimal asymptotic convergence rate

t N2
L[ — )]
t—roo Int

= —d.

Note that Theorem SM7.1 also gives that if x* are the iterates of the simple gossip
method, then lim;_,o InE[(z! — p)?]/Int = —d/2. (The theorem actually only gives
the lower bound, but the proof technique, combined with the fact that the spectrum
of Z% is symmetric, actually gives the result.) This result could have been antici-
pated intuitively as follows. Under the simple gossip iteration, the information of the
measurement &, diffuses following a simple random walk on the grid. According to
the central limit theorem, at large ¢, the information is approximately distributed ac-
cording to a Gaussian distribution of standard deviation v/#, which is approximately

supported by @(\/fd) nodes. This means that at time ¢, a node v gets the information
of ©(t%?) neighbors. As a consequence, the MSE E[(z! — 11)?] is of the order of t~%/2.

Application to the percolation bonds. Let G be the random infinite cluster
of a supercritical percolation in Z¢ as defined in Proposition 5.5. The proposition
gives that the spectral dimension of GG is a.s. d, which is also a lower bound for the
Hausdorff dimension. But it is trivial that the Hausdorff dimension is smaller than d,
thus the two coincide.

COROLLARY SM7.6. Let G be the random infinite cluster of a supercritical per-
colation in Z%, and v € Z%. Let z* be the iterates of the Jacobi polynomial iteration
(5.3). Then a.s. on the event {v € G},

L InE[(a! — )?
t—00 Int

=—d.
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Remark SM7.7. The Jacobi polynomial iteration (5.3) is derived so that

at = ﬂt(a’ﬂ)(W)E, where 7Tta”8) are the orthogonal polynomials w.r.t. the Jacobi mea-
sure o(®A) (dX) = (1= \)*(1+X)PdX on [~1,1], with a = d/2, 3 = 0, d is the spectral
dimension. A curious reader could wonder what happens for other choices of o and
B (while keeping d fixed). This question is investigated at length in Section SM8.5.
The conclusion is that the natural choice @ = d/2,8 = 0 is optimal (up to constant
factors) but there are other choices that are optimal.

SMS8. Proof of Theorem SMT7.1. The proof is divided in four subsections.
Section SMS.1 develops tools that we use both in the proof of the theorem. We then
prove the theorem in Sections SM8.2, SM8.3 and SMS&.4. Finally, in Section SM8.5, we
discuss the choice of the parameters of the Jacobi polynomials in the Jacobi polynomial
iteration. In all this section, we denote o = o(G, W, v) the spectral measure of G.

SMS8.1. Preliminaries. The first lemma relates the MSE of the estimator x!
to the spectral measure.

LEMMA SMS8.1. Write z* = P,(W)¢ using the polynomial gossip point of view.
Then

Bl(a} — 7] = () |Pi(W)eu g, = (o) [ POV ().
Proof. As P;(1) =1, we have
E[z'] = E[P(W)E] = P(W)E[E] = P(W)ul = P,(1)pl = pil.
In words, the estimator z! is unbiased. Thus
E[(xf) - ,U)Q] = var xf, = var (P,(W)¢, ev>42(v)
= var (& Pi(W)ew) oy = (varv) [P(W)ewlliaqy)
using that W is symmetric and that the &, w € V are i.i.d. random variables. Then

El(w, — 1)) = (varv) (R )ews PiW ey = (va00) (e AW Pes) gy -

The proof is finished using the Definition 5.3 of the spectral measure. a0

In the statement of Theorem SM7.1, we have stated results in terms of the spectral
dimension ds = 2lim;_, o Ino([1 — A,1])/InA. In the proof here, we will be more
precise. We show how the results of Theorem SM7.1 actually depend on different
definitions of the dimension.

DEFINITION SM8.2. Let 7 be a probability measure on [—1,1]. We define
1. the right upper dimension dim_,7 € [0, 00] of the measure T as

T — 2 limsup n7([1 - A,1])
A—0 In A

2. the right lower dimension dim_,7 € [0,00] of the measure T as

o r([T— A1)
dim 7 =2 liminf —— 7=
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3. the left upper dimension dim. 7 € [0, 00| of the measure T as

dim. 7 = 2 limsup Imr(=1,~1+A) .
A—0 In A

4. the left lower dimension dim, T € [0, 00| of the measure T as

: _ s lnT([_lv_]-—’_A])
dim, 7 =2 lim inf InA

SMS8.2. Proof of Theorem SMT7.1: simple gossip. In the case of simple
gossip, P,(\) = AL
PROPOSITION SM8.3. Let 7 be a probability measure on [—1,1]. Then

.. [ A%dT(N) min (dim_, 7, dim.7)
T 7 2

Proof. Let d > dim_,7. As dim_,7 = 2limsup,_,olno ([l — A,1])/InA, there
exists constants ¢y, ca > 0 such that for all A € [0,2],

(SM8.1) T([1 = A1) = e AY? = ¢p0 2710 (1 — AL 1))

where (@210 (d\) = (1 — \)¥?7'd\. Then using jointly Lemma SM3.1 and
Eq. (SM8.1),

1
/)\Qtdr()\) > A2tdr(\) > cl/ A1 — N2\ = B(2t + 1,d/2) TN % ,
[0 1] 0 t—o00 t /
for some constant c3. Thus
2t
lim inf M > _é )
t—r00 Int 2
This being true for all d > dim_,7, this proves
A2tdr (A dim
lim inf f ) > —dlm%T .
t—o0 Int 2
The proof at the other edge of the spectrum is the same by symmetry. 0

The proof of Theorem SM7.1 for simple gossip follows easily. Indeed, if 7 = o is
the spectral measure of the graph, then dim_,o = d,. Thus

L — 2 mma S .
lim inf M (Le a:SMS 1)
t—00 Int t—00 Int

1 A2tdo()\) (Proposition SM8.3)

lim g 2 Ao (Y) g _ds

2
SMS8.3. Proof of Theorem SMT7.1: shift-register. In the case of the shift-

register gossip iteration, P;(\) satisfies the second-order recurrence relation

(SM82) Po(A) = 1, Pl()\) = )\, Pt+1(A) = UJAPt()\) + (1 — w)Pt_l()\) .

The case w = 1 corresponds to simple gossip: it has been treated above. We now
assume w € (1,2].
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PROPOSITION SM8.4. Let P, be the polynomials defined in Eq. (SM8.2) with w €
(1,2]. Then

2 w 2 w
p == | (=) 7 (=) + (G -) o (=)
1) =w-1) o) \wve=1) T\ "\2vw -1
where Ty and Uy are the Chebyshev polynomials of the first and second kind respectively
(see Example SM2.3).

Proof. Consider the rescaled version )y of P; given by the formula

(SM8.3) P\ = (w — 1)12Q, (2\/%/\) .

If follows from Eq. (SM8.2) that

Q=1 @GN =20 Q) =20 - Q).

Thus the sequence Q¢,t > 0 satisfies the same recurrence relation as the Chebyshev
polynomials, but with a different initialization. As a consequence, it must be a linear
combination of the two sequences of Chebyshev polynomials: there exists pu,v € R
such that for all ¢,

Qt(A\) = pTy(N) + vUs(N)

The computation of the weights u, v is straightforward from the initialization Qg, Q1.
This proves the proposition. ]

PROPOSITION SM8.5. Letw € (1,2]. The polynomials P;,t > 0 defined in Eq. (SM8.2)
are the orthogonal polynomials w.r.t. the measure

((QW/W)z _ )\2)1/2

7(d\) = T2

dA.

Proof. The orthogonal polynomials w.r.t. the measure

(1 _)\2)1/2
(w/(2vw—T1))* = A2

are computed using Proposition SM2.8 with

dA

F(dN) =

w?

2
—_— 0.
o= 1) cos

p(cos ) =

Simple computations give that p(cosf) = |h(e??)|? with

e (S )

Proposition SM2.8 then gives that the polynomials (2—2/w)T;+(2/w—1)U; are orthog-
onal w.r.t. 7. But these polynomials are the polynomials @; defined in Eq. (SM8.3).
We then use Lemma SM6.1 to prove that P, is orthogonal w.r.t. 7. 0

2
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LEMMA SM8.6. Let P; be the polynomials defined in Eq. (SM8.2) with w € (1, 2]
and T a measure on [—1,1]. Then

lim inf J P()*dr(A) > _min (ﬁ—ﬂ’, RFT)
t—o0 lnt 2

Proof.

/Pt()\)QdT()\) 2/[2ﬁ/ ; Py(\)%dr())

(Proposition SM8.4)

2
w
> clw—lt/ T<7)\> dr(\
( ) [2Vw—T1/w,1] ' 2vw —1 ()

2t
(SM2.2) w w2
> cQ(w71)f/ A+ X2 —1] dr(n).
[2ve—T/w1] \ 2Vw —1 4w —1)

where ¢; > 0 is a constant independent of t. Let d > dim_7. As dim_7 =
2limsupy_,oIno([1 — A, 1])/In A, there exists constants cs,cqs > 0 such that for all
A € 0,2],

(SM8.4) T([1 = A1) > e3AY? = ¢40( 2710 ([1 = AL 1))

where (@210 (d\) = (1 — \)¥?~'d\. Then using jointly Lemma SM3.1 and
Eq. (SM8.4),

/Pt(A)QdT(A) > cs(w— 1) Lﬁ/ <2 %7 At W) (1—N)*27ax

cosh™Hw/(2v/@=1)) o =1 d/2—1
> co(w — l)t/ e <1 — VYT cosh u) sinhu du.
o w

where in the last step we made the change of variable

w w? . 2w —1
w

A+ N —1= u’ L. A=
WS w1 e ie

Denote max = cosh™!(w/(2y/w — 1)) to shorten notations. As cosh is a convex
function, for u € [0, Umax],

coshu.

cosh Upax — 1

cosh Upax — coshu < ——————(Umax — 1),
umax
2 —1 2v/w —1
@1—£coshu< (1_w> <1— Y )
w w Umax

Moreover, choose some constant Umin € (0, Umax) 0 that we can lower bound with a
constant c¢7: for all u € [Umin, Umax], sinhw > ¢7. This finally gives:

d/2—1
) du.

[ Poyar) > e -1y e <1 )

Umin umax

After the change of variable w = 2¢(umax — u), this gives

\ 2d \ . 2t (Umax —Umin) o w d/2—1 1 1
P, > —1 Umax ,—W -~ .
[ Poyaro) > e )/0 s (%umax) L
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Note that e?!“max = (w — 1)7t, thus there exists a constant cg > 0 such that

1 2t (Umax —Umin )
/Pt()\)QdT()\) > CQW/ U271 o
0

This proves that
[ P:(N)2dr(N) S d

liminf ~—~—+—-%-> ——.
t—00 Int 2

This being true for all d > dim_,7, this proves

2 b T
i inf [ Pi(N)2dT(N) < _dlm_)T.

t—o0 Int ~ 2

The proof at the other edge of the spectrum is the same by symmetry. |

SM8.4. Proof of Theorem SM7.1: Jacobi polynomial iteration. In this
section, we use again the notation of Section SM6.2: in the case of the Jacobi polyno-
mial iteration (5.3), we have z! = W,Edsm’o)(W)f, where Wt(a’ﬁ) is the rescaled Jacobi
polynomial; 7(*? = PP /(142) where P{* is the traditional Jacobi polynomial.
Lemma SMS8.1 suggests to study the quantity [ wgdﬁ/z’o) (A\)2do(N). However we study
here the behavior of fﬂta’ﬂ)()\)gda()\) for any (a, 8). This will be useful in Section
SM8.5 to give a motivation for the choice a = d/2,8 = 0 complementary to the in-
tuition developed in Section 5, and will allow us to discuss the performance of other
choices.

PROPOSITION SM8.7. Let T be a probability measure on [—1,1] and a, f > —1/2.
Then

1 (ov,8) 2
s T )T

t—oo Int

< —min (2a + 1,dim_, 7, 2(a — 8) + dim_ 7) .

Before proving this proposition, we use it to finish the proof of the theorem. If
T = o is the spectral measure of the graph, then dim ,o = ds. Thus taking o = d,/2,
£ =0 in Proposition SM8.7, we get

1 (ds/2,0) 2d
(SM8.5) limsup nfﬂt (A)*da(N)

< - min(ds + 1; dSa dS +dlinh_0-) = *ds 5
t—00 Int

as dim, o > 0. One can conclude the proof using Lemma SMS8.1.
We now turn to the the proof of Proposition SMS.7.

LEMMA SM8.8. Let 7 be a probability measure on [—1,1] and a > —1/2, > —1.
Then

. I [ PP ()27 (V)
lim sup

0 < —min(1,dim_, 7 — 2a).
t—o0 n

Proof. Let d < dim_,7. As dim_,7 = 2liminfa_,oIn7([1 — A,1])/In A, there
exists constants Cq, Cy such that for all A € [0,2],

(SMS.6) 7([1 = A, 1)) < CLAY2 = Oy 42710 (1 — A, 1))
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where (4210 (d)) = (1 — A)#271d.
For the proof of this result, we use the asymptotic bound on the Jacobi polyno-
mials given by Proposition SM2.11, thus we divide the integral

PP (0)2dr()) = /

[cos1/t,1]

FEP0par+ [ P,

[0,1] [0,cos 1/t]

and treat the two terms separately.

(a)

/2
1 1
/ PP (N)2dr(N) < Cat?or ([cos - 1}) < C1Cst™ (1 — cos >
[cos1/t,1] t t

for some constants Cs3, Cy. Thus

M fieowt /e PP (N)2dr(N)

MS. li < 2a—d.
(SM8.7) I?LSOIOJP . a—d
(b)
(SMs.8)
[ R eary <ot | (arccos A) 2 Ldr(A)
[0,cos 1/t[ [0,cos(1/t)]

We then use jointly Eq. (SM8.6) and Lemma SM3.1 with the function
F(A) = (arccos \) 72 M nceos 16 T T L ascos 1/t -

Note that f is non-decreasing as a > 1/2. We get

/ (arccos \) "2 tdr ()
[0,cos(1/t)]

< Cg/ (arccos \) 724711 — \) /2714 )\
[0,cos(1/t)[
1\ 42
+ Cyt2ett (1 — cos t)

Now using the simple inequality arccos A > v/2v/1 — X, we get

/ (arccos A) 727 Ldr(\)

(SMSQ) [0,cos(1/¢)[

< C5/ (1 _ )\)7Q+d/273/2d>\+C6t2a+17d
[0,cos(1/¢)[

for some constants Cs, Cg. Now if § is a real number,

1 cos 1/t 1—)\6(21)\
(SMS.10) i Mo”2

t—o0 Int

= max(0,—20 — 2).
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Indeed, if § # —1,

/6051/t(1_)\)5d)\: _(1_)\)5+1 cosl/t: 1
; 1, S+ 1

541
1- (1 — cos l) :|
t

1 [1 g2 O(t—25—2)] N C(é)tmax(D,—Qé—Q) )

for some constant C'(J) depending on §. This proves the statement (SMS8.10)
for § # —1. The result for § = —1 follows easily by noting that both terms
in (SM8.10) are decreasing in 4.

Merging finally Eqs. (SM8.8), (SM8.9) and (SM8.10), we get

(SMS.11)
In PP (N)2dr())
lim sup f[o,cos LVl < =1+ max(0,2a+ 1 —d)
t—o00 Int

=max(—1,2a —d) = —min(l,d — 2a).

Finally

In f[O,l] Pt(aﬂ)(/\)QdT(/\)

I
P Int
. 2 max (f[cos Loy PP O, S st PO (A)QdT(,\))
< lim sup
t—o0 Int
_ I fieonn /ey PP (A)2dr(N) In f[o,cosl/t[Pt<a’6>(/\)2d7(/\)
< max | limsup ,lim sup
t—roo Int t—o0 Int
(SM8.7),(SM8.11)
< max(2a — d,—min(1l,d — 2a)) = —min(1,d — 2a) .
As this is true for all d < dim_, 7, the lemma is proved. 0

Proof of Proposition SMS8.7. If we denote 7 the symmetric measure of 7 w.r.t. 0
(i.e. the image measure of 7 by the map A — —\), we have

[P0 = [ PO aparo) = [ PPz
[—1,0] [0,1] [0,1]

Thus according to Lemma SMS.8,
(SM8.12) a0

. R A PVENELPY
lim sup

t—o0 Int

< —min(1,dim_, 7 — 28) = —min(1,dim, 7 — 203).
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Finally, using that ﬂﬁa’ﬁ) = Pt(aﬂ)/(tt,a)’

_ [, P 0)2dr(y) [, PP AT (o)
lim sup < lim sup — 2lim sup
t—o00 Int t—o00 Int t—o00 Int
In (2max ([, o PP 2T, [, PP ()2dr()))
< limsup . ! -2«
t— 00 Int
1 PP (0)2dr(A 1 PP (A)2dr(A
. ]flf[_l 0] t ( ) T( ) . nf[o 1] t ( ) T( )
< max | limsup : ,lim sup - — 2«
t—o0 Int t—so0 Int

((SM8.12),Lemma SM8.8)
< max (—min(1,dim, 7 —28), —min(1,dim_, 7 — 2a)) — 2«

N

—min(1,dim, 7 —28,dim 7 — 2a) — 2«

—min(2a 4+ 1,2(a — 8) + dim, 7,dim , 7).

SMS8.5. Robustness of the Jacobi polynomial iteration and tuning of
the parameters o and S. In this section, we explore the generality of Proposition
SMS8.7, which goes beyond the proof of Theorem SM7.1, in order to derive some
consequences for the robustness of the Jacobi polynomial iteration and for the tuning
of the parameters o and f.

In the statistical framework of Section SM7, let x* = wga’ﬁ )(W)f be the iterates of
the Jacobi polynomial iteration on some graph with spectral measure 7 = 7(G, W, v),
for some arbitrary choice of parameters («, 8). In particular, note that we do not
impose the relation o = d/2. Then Proposition SM8.7 gives

¢ N2
lim sup —IHE [(xv M) ]

< —min (2a + 1,dim_,7,2(a — 8) + dim, 7) .
t—00 Int

Note that the rate of decay depends on the spectral measure 7 only through the left
and right (lower) dimensions of 7. Again, this shows some robustness of the Jacobi
polynomial iteration to finer details of the graph. Moreover, note that this inequality
proves some rate of decay even when the parameter a of the Jacobi polynomial iter-
ation is not half of the spectral dimension of the graph. This proves some robustness
of the Jacobi polynomial iteration to a wrong tuning of the spectral dimension.

This last remark encourages to explore what choices of o and 8 lead to optimal
rates for a given graph. The Jacobi polynomial iteration introduced in Section 5.2
corresponds to the specific choice a = d;/2, 8 = 0, where dy is the spectral measure
of the graph. Inspired by (SM8.5), we define optimality as follows

DEFINITION SM8.9. Let o, 8 > —1,d,d—, > 0. We say that («, ) is optimal
for (d—,d=) if for any spectral measure o such that dim_,o = d_, and dim, 0 = d,

In [ 7P (A)2do () _

< —d,.

lim su
t—)oop Int

The following theorem is an analogue of the optimality theorem SM7.1(2) in the
general case.

THEOREM SMS8.10. Consider a graph G, a gossip matric W and a vertex v. De-
note o = o(G,W,v) the spectral measure of the graph. Let &,,v € V be i.i.d. samples
from a distribution of mean p.
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Let o, B > —1 and define the polynomial iteration xt = wﬁ""ﬁ)(W)g. If (a,B) is
optimal for (dim, o,dim_ o), then

Ink t _ 2
(SM8.13) lim sup ol (G Dl
t—o0 Int

< —dim_,o.

In the section above, we prove that (d_,/2,0) is optimal for (d.,d_,) (for any
de,d_, > —1/2). We now explore other choices. According to Proposition SM8.7, to
prove that («, 8) is optimal for (d._,d_,), it is sufficient to prove that

. 20+1>d_,
min(2a + 1,d—,2(a — B)+d) =d &
( e - B)+do) = d {zm_g)w@@
(SMS.14) & a2 5(d - 1)
B<adt tegle

This gives a wide range of optimal parameters. For instance, the parameter « can be
chosen arbitrarily large. In Figures SM1B and SM2B, the shaded regions corresponds
to region for (o, 3) defined by (SM8.14) with (d,d_) = (2,2).

Note however that we have only proved that (SM8.14) are sufficient conditions
for the optimality Theorem SMS8.10 to hold. To explore the tightness of our condition,
we present in Figure SM1 the results of simulations on the 2D grid. The setting is the
same as in Section 3 (see also Section SM1 for details). Note that for the 2D infinite
grid, d.. = d_, = 2 (see Proposition 5.2 and the symmetry of the spectrum of Z<¢
that follows from [SM9, Eq.(7.4)]). The curves in Figure SM1A closest to the local
averaging are those satisfying the condition (SM8.14), thus our condition seems tight.

Finally, note that the result (SM8.13) of Theorem SMS8.10 gives the rate of the
power decay of the MSE, but neglects constants and sub-polynomial factors. These
factors depend on (a,3) and can be significant for extreme values of («, ). For
instance, in Figure SM2, we run simulations in the same setting as before, but for
choices of parameters deeper in the optimality zone (SM8.14). The performance
worses as « gets bigger. So contrarily to what is suggested by (SM8.14) and Theorem
SMT7.1, taking large values for « is a bad idea in practice. This can also be hinted at
by the limit [SM5, Eq. (18.6.2)]

N T+’
lim 7(®®(\) = <+> .

a—00 2

This means that, as o — oo, the polynomial gossip 2! = wga’ﬁ)(W)S converges to

the simple gossip 2! = W*'¢ with the gossip matrix W = (I + W)/2. We know from
Theorem SM7.1(1) that simple gossip is suboptimal.

Overall, theory and practice suggest that the choice @ = dim ,0/2, § = 0 that
we make in Section 5.2 is relevant.

SM9. Message passing seen as a polynomial gossip algorithm. This sec-
tion develops another application of the polynomial point-of-view on gossip algo-
rithms. It is independent of the Jacobi polynomial iterations developed in Sections
5-6; we show that the message passing algorithm for gossip of [SM4] has a natural
derivation as a polynomial gossip algorithm and uses this point of view to derive
convergence rates.
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Fig. SM1: Simulations of polynomial iterations using Jacobi polynomials with differ-
ent parameters («, 3): frontier tightness.
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Fig. SM2: Simulations of polynomial iterations using Jacobi polynomials with differ-
ent parameters («, 3): large a asymptotic.

The message passing algorithm of [SM4] (in its zero-temperature limit) defines
quantities on the edges of the graph G with the following recursion: for v,w € V
linked by an edge in the graph G, it defines KU, = 0, M2, =0, and

(SM9.1)

1
R S R L)
weEN (v), uFw vw ueN (v), uFw

where N (v) denotes the set of neighbors of v. K,, and M,, are interpreted as
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messages going from v to w in G: M}, corresponds to an average of observations
gathered by v and transmitted to w; K?,, is the corresponding number of observations.
We recommend [SM4, Section IT.A] and Lemma SM9.2 for a detailed description of
this intuition. At each time step ¢, the output of the algorithm is

t €U + Zue./\/(v) K’ZUMliv

(SM9.2) ot =
! 1+ EuGN(v) K’Ltl/l)

This gossip methods performs exact local averaging on trees, as shown by the following
proposition.

PRrOPOSITION SM9.1. Assume that G is a tree. Then for allt > 1, v eV,

1
Sl P

wWE B, (t)

Proof. Let t > 0 and v,w € V be two vertices linked by an edge in G. Define
B, (t) as the set of vertices u in B,,(t) such that all paths in the tree G going from

u to w pass though v.
By (t)

t
M.

LEMMA SM9.2. For allt > 0, for all v,w € V linked by an edge in G,

1
K! = |Byul(t d ift>1, M. =-—"— w-
v = | @1 " v | Bow(t)] eB’z:(zt)g

Proof. The proof goes by induction. The statement is trivial for ¢ = 0, 1. For the
induction, assume the result at time ¢ and note that

(SM9.3) Buw(t+1) = {v} U U Bw®],
weN (v), uZw

where all unions are disjoint. This essentially comes from the fact that G has no
loops.
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By ()

Byw(t+1) — " R

Taking cardinal, we get that

e N R E D D O e E D DI SH i
weN (v), u#w weEN (v), u#w

This proves the induction for the first equality. The proof for the second equality is
similar:

1 M. : 1
|va(t—|- 1)| Z gu (51\2 ?) ﬁ gv + Z Z gz

UE By (t41) UEN (v), u#w T € Byy ()
(indlﬁtion) gv + z:uej\/(v)7 uFw ‘BUU (t) |Mli’u
- Kb
(induction) &v + 2uen(v), ustw KoMy, (SMO1) 41
- KtJrl - vw
vw

d

We now end the proof of Proposition SM9.1. As B,(t) = {v} U (UueN(v) Buv(t))
with disjoint unions, using Lemma SM9.2, we get
O

1 Y 6 - o+ 2 ueN (v) 2w B (t) Sw _ St D wen () KuoMiy (M9.2)
| By ()] b 1+ uen(w) [Buo(t)] L4 ven) Kiw !

WE By (t)

Nothing prevents from running the message passing recursion (SM9.1)-(SM9.2)
in a graph G with loops. In the case of regular graphs, we are able to interpret the
message passing algorithm as a polynomial gossip algorithm.

THEOREM SM9.3. Assume G is d-reqular, meaning that each vertex has degree
d, d = 2. Assume further that W = A(G)/d. Denote o(Ty) = o(Tq, W,v) the
spectral measure of the infinite d-reqular tree at any vertexr v (see Definition 5.3).
Then the output z' of the message passing algorithm (SM9.1)-(SM9.2) on G can
also be obtained as ¥t = w(W)E where mg,m1,... are the orthogonal polynomials

w.r.t. (1 = X)o(Tg)(dN).

Proof. Asnoted by [SM6], the message passing iteration (SM9.1)-(SM9.2) indexed
by the edges of the graph can be written as an iteration indexed by the vertices of the
graph. We repeat here the elementary derivation of this statement in our particular
case of d-regular graphs.
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First, because G is d-regular, it is an easy check from (SM9.1) that K!, does
not depend on the edge (v, w) (thus we denote it K*) and it satisfies the recursion
KY=0, K" =1+ (d—1)K".

Let us now denote Sy = & + >, cnrv) KMy, and Ly = 1 + dK* so that a7}, =
St /L. We will now find recursions for L; and S*:

SM9.1)

Lips =14 dit 1+d(1+(d—1K) =2+ (d—1)(1+dK') =2+ (d—1)L,,

and

SM9.1
SHl—¢ 4 Z Kt+1Mﬂ1( M9 )gvJr Z €0+ Z K'M,
uweN (v) uwEN (v) weN (u),w#v

=& + Z (S; - KtMifu) :
ueN (v)

Skt TV ag + > Y kg

ueN (v) ueN (v) weN (v),w#u

=dé&+(d—1) Y KM =6+ (d-1)87",
weN (v)

we finally get
St = A(G)St — (d—1)S*L.

To sum up, we now have the simpler formulas for the message passing algorithm:

Lt+1:2+(d—1)Lt7 L():].,
(SM9.4) Sl —awst —(d—1)st1, SY=¢, St=¢4dwe,
SIJt = St/Lt .
In Section SM6.4, it is proved that 7 (A) = p;(\)/p:(1) where p; satisfies the recursion
formula
d
po(N) =vVd—1, pi(A)=d\+1, p(A) = ﬁ)\pt()\) —pi—1(A), t=1.

Denote g, = (d — 1)*=1/2p,. Tt is an easy check that
M) =1, a)=dA\+1, @1(\)=d\g(\) - (d-1)g-1(\), t>1.
Using (SM9.4), one sees that for all ¢, S* = ¢;(W)¢& and Ly = q;(1). Thus

l‘t _ ‘Si _ Qt(W)§ — pt(W)§ _ ﬂ_t(W)é-

Ly @ (1) pe(1)
In words, the theorem above states that message passing corresponds to the best
polynomial gossip algorithm when one believes the graph is a tree. This is not surpris-
ing as message passing algorithms are often derived by neglecting loops in a graph.
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An easy follow-up of this theorem is that the iterates z' defined in (SM9.1)-
(SM9.2) follow a second-order recursion (in d-regular graphs). Actually the spectral
measure o(Ty) of the infinite d-regular tree, also called the Kesten-McKay measure,
can be computed explicitly (see [SM7, Section 2.2]),

d d— S\ 2
o(Tq)(dA) = ST (4( - D _ h\ ) 1[72\/ﬁ/d,2\/ﬁ/d}(/\)d>"

The recurrence relation of the modified Kesten-McKay measure (1 — A)o(Ty)(d\) is
derived in Section SM6.4. It shows that

xozf, at = agW¢ + b€, i :atht—ct:vt_l,
d b 1
an = ——— _
0 d—‘rl’ 0 d—f—l’
d —(t+1 1 2 —
4 _o(d —1)~+D) A2 1)t
4y — 3 (d-1) .\ — AT ald—1) 1.

1—2(d—1)-0+) 7 1—2(d—1)-0+D "7
Theorem SM9.3 gives a way to study the convergence of the message passing algo-
rithms on d-regular graphs with loops. For instance, using asymptotic properties of
the orthogonal polynomials w.r.t. (1 — X\)o(T4)(dA), we obtain the convergence rate
of the message passing algorithm as a function of the absolute spectral gap 4 of the
matrix:

THEOREM SM9.4. Assume G is d-reqular, meaning that each vertex has degree d,
d > 3. Assume further that W = A(G)/d, and denote ¥ its absolute spectral gap. Let
& = (&) ey be any family of initial observations and x* = (z!),ev be the sequence of
iterates generated by equations (SM9.1)-(SM9.2). Then

1 Ify<1—2Vd—1/d,

lmwmwﬁ_gwuu<O—&%+¢u—@y_4w_1vﬁ
t—o0 2 = _4(d— 1)/d2 .

Moreover, the upper bound is reached if there exists an eigenvector u corre-
sponding to an eigenvalue of W of magnitude 1 — 4 such that (u,&) # 0.

2. Ify>1-2/d—1/d,

2v/d—1/d
—4(d—1)/d®"

limsup ||2* — £1]}y/* <
t—o0

A consequence of this theorem is that the rate of convergence of the message passing
algorithm is 1 — ¢y + o(¥) as 4 — 0, for some constant ¢. This proves that message
passing has a diffusive (or unaccelerated) behavior on graphs with a small spectral
gap. Figure SM3 shows this diffusive convergence rate on the 2D grid.

Proof of Theorem SM9./. Theorem SM9.3 states that z = m,(W)¢ where the
m¢ are the orthogonal polynomials w.r.t. the modified Kesten-McKay measure (1 —
Ao (Tg)(dA). Then

n 2
(SM9.5) Hmt—EHEZZE:@ﬂfVWAAH2<IK-—El3( sup HW%AN> ;

i=2 AE[=(1-%),(1-7)
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where Ag, ..., A, are the eigenvalues of W different from 1, that lie in [—(1—7), (1—7)]
by definition of the absolute spectral gap 7, and u?,...,u"™ are the corresponding
normalized eigenvectors.

In Section SM6.4, we show that

- pe(N)
M) = pe(1)”
PO =), e = 2O,

A = (VA= T+2) U) = Tia (),

where T; and U; are the Chebyshev polynomials of the first kind and of the second
kind respectively. Denote D = d/(2v/d — 1). Then

1 N
(SM9.6) sup | (A)| = —= sup [pe(N)] -
Ae[—(1-3),(1=7)] [e(D)| re[-(1-3)D,(1-%)D]
If A€ [-1,1], |T;(\)] < 1 and |U(\)| <t + 1. Thus
(SM9.7) sup [N < (\/d 14 1) (t+1)+1.
>\E[—1,1]

We now discuss the different cases of the theorem.

(1) We assume 7 < 1 —2+/d — 1/d. As p; are orthogonal polynomials w.r.t. some
measure on [—1, 1], all zeros of p; are real, distinct and located in the interior of [—1, 1]
(see Proposition SM2.1). It follows that

(SM9.8)
sup [pe(N)] = [P (1 —)D)| , sup De(N)| = [pe (—=(1 =F)D)] .
AE(L,(1-4)D] Ae[-(1-9)D,~1)

Merging Egs. (SM9.6)-(SM9.8), we obtain

sup eyl
Ae[-(1-7),1-7)]

1 N - - -
< = max ([5o((1 = )DL e~ (1 = D), (VA= T+ 1)(t+ 1) +1) .
b (D))
LEMMA SM9.5. 1. If x > 1, then there exists a constant C(d,x) # 0 such
that
t
(SM9.9) (@)~ C(da) (1:+ \/1:2—1> .
2. If x < —1, then there exists a constant C(d,x) # 0 such that
} t
(SM9.10) De(x) N C(d,x) (Cﬂ — Va2 — 1) .

Proof. In the proof of Lemma SM2.10, we developed the following formulas for
the Chebyshev polynomials:

z4+ 271 2t 27t z4 271 Pt = (D)
Ty ( 2 ) - Ut 2 - z—2z"1 '
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We write z = (2+271)/2 with [z| > 1. If 2 > 1, then z = 2+ V22 — 1, and if 2 < —1,
then z = x — v/z2 — 1. Then

pi() = (VA= 1+2) Ui(w) - Topa (@)
:(erer;—l) z—z 1 2
N [(me*) ! _1]zt+l.

LT (D)t ()

t— o0 2 z—z"1 2

The constant that appears is non-zero, thus the result is proved. ]

Using Lemma SM9.5, we get that there exists a constant C(d) such that

(1=9D+ /TP -1\
D++vD?2-1 '

sup [T (M| < C(d) (

Ae[-(1-%),(1-9)]

Finally, using (SM9.5), this gives

Ixt€1||2<||§£1|20(d)<(1‘ﬁ)D+ ((l—i)D)2—1> '

D++vD?-1

Dividing the numerator and the denominator of the fraction by D, we get the desired
result.

We now turn to the second part of the statement. Let u be an eigenvector of W
corresponding to an eigenvalue A of magnitude 1 — 4 such that (£, u) # 0. Then

(M)
pe(D)|”

l2* = €1]|2 > [(€, w)llme(N)] = (€, )|
Using as before Lemma SM9.5, we get the desired lower bound.
(2) We now assume 4 > 1 —2v/d — 1/d. This means that (1 —4)D < 1, and thus
(SM9.7)
sip RIS s B < (VA TH1) (@141

Ae[—-(1—74)D,(1—%)D] Ae[—1,1]

Combining with (SM9.5) and (SM9.6), we get

_ 1
A o 1 PRy 3 | Pre—— d—14+1)@t+1)+1),
I = €1llo < llg = &xlla = (VA= T+1) (0+1) +1)
which gives the desired result using Lemma SM9.5. |

However, the message passing algorithm can be competitive in situations with a
large spectral gap. For instance, McKay’s Theorem [SM7, Theorem 1.1] states that
the spectral measure of a uniformly random d-regular graph on n vertices converges
to the spectral measure o(T,) of the d-regular tree (in law, for the weak-convergence
topology). This suggests that the message passing algorithm is well-suited for uni-
formly sampled large regular graphs. We give simulations in Figure SM4 on uniformly
sampled 3-regular graphs of size n = 2000. The results were averaged over 10 graphs.
We observe that in this case, message passing matches closely the lower-bound. Note
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Fig. SM3: Performance of different gossip algorithms running on the 2D grid.
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that in this case, we do not have a diffusive rate of convergence because the spectral
gap v does not converge to 0 as n — oo (see [SM3] for a proof that v = 1—2v/d — 1/d
in probability).
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