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This project targets an excellent theory-oriented student. It could start with an internship
in the spring of 2026, followed by the PhD starting in the fall of 2026. If interested, feel free to
contact me at raphael.berthier@inria.fr.

Context and Objectives. Shallow neural networks, specifically single-hidden-layer models,
are functions of the form

fa,u,b(x) =
m∑
i=1

aiσ(⟨ui, x⟩+ bi),

where x ∈ Rd and σ : R → R is a non-linear activation function, such as ReLU σ(z) = max(z, 0).
In statistical learning, the parameters a, u, b are typically trained using (stochastic) gradient
descent on a data-fitting loss term.

Existing approaches to study these non-convex dynamics focus on simplified regimes. The
Neural Tangent Kernel (NTK) approximation [13] linearizes the dynamics around initialization,
but it fails to capture feature selection or explain the practical success of neural networks [9].
Mean-field theory for neural networks [15, 8, 17, 16] applies only in the limit of infinitely many
neurons. This proposal explores a novel framework, the two-scale regime, to investigate non-
linear dynamics with (i) a moderate number of neurons and (ii) feature selection mechanisms.

Two-Scale Regime. In this regime, gradient steps for u and b are taken to be infinitesimally
smaller than those for a, introducing fast-slow dynamics. On the fast timescale, only a evolves
significantly while u and b remain fixed, leading to linear regression dynamics that are well-
understood. On the slower timescale, u and b adjust while a remains optimally adapted to u
and b. This separation simplifies the analysis of u and b’s slower dynamics by leveraging the
fast equilibrium of a.

Fast-slow systems have a long history in mathematics and physics (e.g., [3, Chapter 2]).
Two-scale algorithms have been used in stochastic approximation and optimization [6, 7, 11,
18, 12], but have not been much applied to neural network analysis. Singular perturbation
theory [3], particularly Tikhonov’s theorem, allows the decoupling of fast and slow dynam-
ics. In the neural network setting, this decoupling provides a powerful framework to analyze
interactions between the two layers.

Research Directions.
1. **One-dimensional case:** In dimension d = 1, with ReLU activation σ(z) = max(z, 0),

shallow neural networks represent piecewise affine functions. The fast dynamics of a yield the
best piecewise affine approximation of the target function for a fixed partition, while the slow
dynamics of u and b refine the partition itself. This setup connects to classical numerical analysis
problems on free-knot spline approximation. This connection between free-knot approximation
and neural networks in the two-scale regime remains largely unexplored and will be a focus of
this research. First steps were taken in [14].

2. **High-dimensional case (d ≫ 1):** In the case of “single-index models” f∗(x) =
φ∗(⟨u∗, x⟩), the two-scale regime separates the alignment of ui with u∗ (slow dynamics) from
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the approximation of the non-linearity φ∗ by ai (fast dynamics). This incremental learning
phenomenon was demonstrated in [4]. Future work will extend these results to “multi-index
models”, f∗(x) = φ∗(Px), where P projects onto a low-dimensional subspace. The two-scale
regime could simplify this setting and offer insights into broader neural network behaviors
[2, 1, 10, 5].

3. **Numerical and theoretical extensions:** This research will also address practical ex-
tensions to finite learning rates and stochastic gradient descent. While the two-scale regime
assumes an infinite timescale separation, quantifying its behavior under finite conditions will
help bridge the gap between theoretical insights and real-world applications.

Summary. This thesis aims to formalize the two-scale regime for neural networks and demon-
strate its utility in analyzing complex dynamics with a moderate number of neurons. By
combining tools from numerical analysis, singular perturbation theory, and modern deep learn-
ing, this work seeks to contribute new theoretical insights and practical guidelines for neural
network training.
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